1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
//! **daggy** is a directed acyclic graph data structure library.
//!
//! The most prominent type is [**Dag**](./struct.Dag.html) - a wrapper around [petgraph]
//! (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/index.html)'s [**Graph**]
//! (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/graph/struct.Graph.html)
//! data structure, exposing a refined API targeted towards directed acyclic graph related
//! functionality.
//!
//! The [**Walker** trait](./walker/trait.Walker.html) defines a variety of useful methods for
//! traversing any graph type. Its methods behave similarly to iterator types, however **Walker**s
//! do not require borrowing the graph. This means that we can still safely mutably borrow from the
//! graph whilst we traverse it.

#![forbid(unsafe_code)]
#![warn(missing_docs)]

pub extern crate petgraph;
use petgraph as pg;

use petgraph::graph::{DefaultIx, GraphIndex, IndexType};
use std::marker::PhantomData;
use std::ops::{Index, IndexMut};

pub use petgraph::graph::{EdgeIndex, NodeIndex, EdgeWeightsMut, NodeWeightsMut};
pub use walker::Walker;

use petgraph::algo::{DfsSpace, has_path_connecting};
use petgraph::visit::Visitable;

pub mod walker;


/// The Petgraph to be used internally within the Dag for storing/managing nodes and edges.
pub type PetGraph<N, E, Ix> = pg::Graph<N, E, pg::Directed, Ix>;

/// Read only access into a **Dag**'s internal node array.
pub type RawNodes<'a, N, Ix> = &'a [pg::graph::Node<N, Ix>];
/// Read only access into a **Dag**'s internal edge array.
pub type RawEdges<'a, E, Ix> = &'a [pg::graph::Edge<E, Ix>];


/// A Directed acyclic graph (DAG) data structure.
///
/// Dag is a thin wrapper around petgraph's `Graph` data structure, providing a refined API for
/// dealing specifically with DAGs.
///
/// Note: The following documentation is adapted from petgraph's [**Graph** documentation]
/// (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/graph/struct.Graph.html).
///
/// **Dag** is parameterized over the node weight **N**, edge weight **E** and index type **Ix**.
///
/// **NodeIndex** is a type that acts as a reference to nodes, but these are only stable across
/// certain operations. **Removing nodes may shift other indices.** Adding kids to the **Dag**
/// keeps all indices stable, but removing a node will force the last node to shift its index to
/// take its place.
///
/// The fact that the node indices in the **Dag** are numbered in a compact interval from 0 to *n*-1
/// simplifies some graph algorithms.
///
/// The **Ix** parameter is u32 by default. The goal is that you can ignore this parameter
/// completely unless you need a very large **Dag** -- then you can use usize.
///
/// The **Dag** also offers methods for accessing the underlying **Graph**, which can be useful
/// for taking advantage of petgraph's various graph-related algorithms.
#[derive(Clone, Debug)]
pub struct Dag<N, E, Ix: IndexType = DefaultIx> {
    graph: PetGraph<N, E, Ix>,
    cycle_state: DfsSpace<NodeIndex<Ix>, <PetGraph<N, E, Ix> as Visitable>::Map>,
}


/// A **Walker** type that can be used to step through the children of some parent node.
pub struct Children<N, E, Ix: IndexType> {
    walk_edges: pg::graph::WalkNeighbors<Ix>,
    _node: PhantomData<N>,
    _edge: PhantomData<E>,
}


/// A **Walker** type that can be used to step through the parents of some child node.
pub struct Parents<N, E, Ix: IndexType> {
    walk_edges: pg::graph::WalkNeighbors<Ix>,
    _node: PhantomData<N>,
    _edge: PhantomData<E>,
}

/// An iterator yielding multiple `EdgeIndex`s, returned by the `Graph::add_edges` method.
pub struct EdgeIndices<Ix: IndexType> {
    indices: ::std::ops::Range<usize>,
    _phantom: PhantomData<Ix>,
}

/// An alias to simplify the **Recursive** **Walker** type returned by **Dag**.
pub type RecursiveWalk<N, E, Ix, F> = walker::Recursive<Dag<N, E, Ix>, Ix, F>;


/// An error returned by the `Dag::add_edge` method in the case that adding an edge would have
/// caused the graph to cycle.
#[derive(Copy, Clone, Debug)]
pub struct WouldCycle<E>(pub E);


impl<N, E, Ix> Dag<N, E, Ix> where Ix: IndexType {

    /// Create a new, empty `Dag`.
    pub fn new() -> Self {
        Self::with_capacity(1, 1)
    }

    /// Create a new `Dag` with estimated capacity for its node and edge Vecs.
    pub fn with_capacity(nodes: usize, edges: usize) -> Self {
        Dag {
            graph: PetGraph::with_capacity(nodes, edges),
            cycle_state: DfsSpace::default(),
        }
    }

    /// Removes all nodes and edges from the **Dag**.
    pub fn clear(&mut self) {
        self.graph.clear();
    }

    /// The total number of nodes in the **Dag**.
    pub fn node_count(&self) -> usize {
        self.graph.node_count()
    }

    /// The total number of edgees in the **Dag**.
    pub fn edge_count(&self) -> usize {
        self.graph.edge_count()
    }

    /// Borrow the `Dag`'s underlying `PetGraph<N, Ix>`.
    /// All existing indices may be used to index into this `PetGraph` the same way they may be
    /// used to index into the `Dag`.
    pub fn graph(&self) -> &PetGraph<N, E, Ix> {
        &self.graph
    }

    /// Take ownership of the `Dag` and return the internal `PetGraph`.
    /// All existing indices may be used to index into this `PetGraph` the same way they may be
    /// used to index into the `Dag`.
    pub fn into_graph(self) -> PetGraph<N, E, Ix> {
        let Dag { graph, .. } = self;
        graph
    }

    /// Add a new node to the `Dag` with the given weight.
    ///
    /// Computes in **O(1)** time.
    ///
    /// Returns the index of the new node.
    ///
    /// **Note:** If you're adding a new node and immediately adding a single edge to that node from
    /// some other node, consider using the [add_child](./struct.Dag.html#method.add_child) or
    /// [add_parent](./struct.Dag.html#method.add_parent) methods instead for better performance.
    ///
    /// **Panics** if the Graph is at the maximum number of nodes for its index type.
    pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix> {
        self.graph.add_node(weight)
    }

    /// Add a new directed edge to the `Dag` with the given weight.
    ///
    /// The added edge will be in the direction `a` -> `b`
    ///
    /// Checks if the edge would create a cycle in the Graph.
    ///
    /// If adding the edge **would not** cause the graph to cycle, the edge will be added and its
    /// `EdgeIndex` returned.
    ///
    /// If adding the edge **would** cause the graph to cycle, the edge will not be added and
    /// instead a `WouldCycle<E>` error with the given weight will be returned.
    ///
    /// In the worst case, petgraph's [`is_cyclic_directed`]
    /// (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/algo/fn.is_cyclic_directed.html)
    /// function is used to check whether or not adding the edge would create a cycle.
    ///
    /// **Note:** Dag allows adding parallel ("duplicate") edges. If you want to avoid this, use
    /// [`update_edge`](./struct.Dag.html#method.update_edge) instead.
    ///
    /// **Note:** If you're adding a new node and immediately adding a single edge to that node from
    /// some other node, consider using the [add_child](./struct.Dag.html#method.add_child) or
    /// [add_parent](./struct.Dag.html#method.add_parent) methods instead for better performance.
    ///
    /// **Panics** if either `a` or `b` do not exist within the **Dag**.
    ///
    /// **Panics** if the Graph is at the maximum number of edges for its index type.
    pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E)
        -> Result<EdgeIndex<Ix>, WouldCycle<E>>
    {
        let should_check_for_cycle = must_check_for_cycle(self, a, b);
        let state = Some(&mut self.cycle_state);
        if should_check_for_cycle && has_path_connecting(&self.graph, b, a, state) {
            return Err(WouldCycle(weight));
        }

        Ok(self.graph.add_edge(a, b, weight))
    }

    /// Adds the given directed edges to the `Dag`, each with their own given weight.
    ///
    /// The given iterator should yield a `NodeIndex` pair along with a weight for each Edge to be
    /// added in a tuple.
    ///
    /// If we were to describe the tuple as *(a, b, weight)*, the connection would be directed as
    /// follows:
    ///
    /// *a -> b*
    ///
    /// This method behaves similarly to the [`add_edge`](./struct.Dag.html#method.add_edge)
    /// method, however rather than checking whether or not a cycle has been created after adding
    /// each edge, it only checks after all edges have been added. This makes it a slightly more
    /// performant and ergonomic option that repeatedly calling `add_edge`.
    ///
    /// If adding the edges **would not** cause the graph to cycle, the edges will be added and
    /// their indices returned in an `EdgeIndices` iterator, yielding indices for each edge in the
    /// same order that they were given.
    ///
    /// If adding the edges **would** cause the graph to cycle, the edges will not be added and
    /// instead a `WouldCycle<Vec<E>>` error with the unused weights will be returned. The order of
    /// the returned `Vec` will be the reverse of the given order.
    ///
    /// **Note:** Dag allows adding parallel ("duplicate") edges. If you want to avoid this, use
    /// [`update_edges`](./struct.Dag.html#method.update_edges) instead.
    ///
    /// **Note:** If you're adding a series of new nodes and edges to a single node, consider using
    ///  the [add_child](./struct.Dag.html#method.add_child) or [add_parent]
    ///  (./struct.Dag.html#method.add_parent) methods instead for greater convenience.
    ///
    /// **Panics** if the Graph is at the maximum number of nodes for its index type.
    pub fn add_edges<I>(&mut self, edges: I) -> Result<EdgeIndices<Ix>, WouldCycle<Vec<E>>> where
        I: IntoIterator<Item=(NodeIndex<Ix>, NodeIndex<Ix>, E)>,
    {
        let mut num_edges = 0;
        let mut should_check_for_cycle = false;

        for (a, b, weight) in edges {
            // Check whether or not we'll need to check for cycles.
            if !should_check_for_cycle {
                if must_check_for_cycle(self, a, b) {
                    should_check_for_cycle = true;
                }
            }

            self.graph.add_edge(a, b, weight);
            num_edges += 1;
        }

        let total_edges = self.edge_count();
        let new_edges_range = total_edges-num_edges..total_edges;

        // Check if adding the edges has created a cycle.
        if should_check_for_cycle &&
            pg::algo::is_cyclic_directed(&self.graph) {
            let removed_edges = new_edges_range.rev().filter_map(|i| {
                let idx = EdgeIndex::new(i);
                self.graph.remove_edge(idx)
            });
            Err(WouldCycle(removed_edges.collect()))
        } else {
            Ok(EdgeIndices { indices: new_edges_range, _phantom: ::std::marker::PhantomData, })
        }
    }

    /// Update the edge from nodes `a` -> `b` with the given weight.
    ///
    /// If the edge doesn't already exist, it will be added using the `add_edge` method.
    ///
    /// Please read the [`add_edge`](./struct.Dag.html#method.add_edge) for more important details.
    ///
    /// Checks if the edge would create a cycle in the Graph.
    ///
    /// Computes in **O(t + e)** time where "t" is the complexity of `add_edge` and e is the number
    /// of edges connected to the nodes a and b.
    ///
    /// Returns the index of the edge, or a `WouldCycle` error if adding the edge would create a
    /// cycle.
    ///
    /// **Note:** If you're adding a new node and immediately adding a single edge to that node from
    /// some parent node, consider using the [`add_child`](./struct.Dag.html#method.add_child)
    /// method instead for greater convenience.
    ///
    /// **Panics** if the Graph is at the maximum number of nodes for its index type.
    pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E)
        -> Result<EdgeIndex<Ix>, WouldCycle<E>>
    {
        if let Some(edge_idx) = self.find_edge(a, b) {
            if let Some(edge) = self.edge_weight_mut(edge_idx) {
                *edge = weight;
                return Ok(edge_idx);
            }
        }
        self.add_edge(a, b, weight)
    }

    /// Find and return the index to the edge that describes `a` -> `b` if there is one.
    ///
    /// Computes in **O(e')** time, where **e'** is the number of edges connected to the nodes `a`
    /// and `b`.
    pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>> {
        self.graph.find_edge(a, b)
    }

    /// Access the parent and child nodes for the given `EdgeIndex`.
    pub fn edge_endpoints(&self, e: EdgeIndex<Ix>) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)> {
        self.graph.edge_endpoints(e)
    }

    /// Remove all edges.
    pub fn clear_edges(&mut self) {
        self.graph.clear_edges()
    }

    /// Add a new edge and parent node to the node at the given `NodeIndex`.
    /// Returns both the edge's `EdgeIndex` and the node's `NodeIndex`.
    ///
    /// node -> edge -> child
    ///
    /// Computes in **O(1)** time.
    ///
    /// This is faster than using `add_node` and `add_edge`. This is because we don't have to check
    /// if the graph would cycle when adding an edge to the new node, as we know it it will be the
    /// only edge connected to that node.
    ///
    /// **Panics** if the given child node doesn't exist.
    ///
    /// **Panics** if the Graph is at the maximum number of edges for its index.
    pub fn add_parent(&mut self, child: NodeIndex<Ix>, edge: E, node: N)
        -> (EdgeIndex<Ix>, NodeIndex<Ix>)
    {
        let parent_node = self.graph.add_node(node);
        let parent_edge = self.graph.add_edge(parent_node, child, edge);
        (parent_edge, parent_node)
    }

    /// Add a new edge and child node to the node at the given `NodeIndex`.
    /// Returns both the edge's `EdgeIndex` and the node's `NodeIndex`.
    ///
    /// child -> edge -> node
    ///
    /// Computes in **O(1)** time.
    ///
    /// This is faster than using `add_node` and `add_edge`. This is because we don't have to check
    /// if the graph would cycle when adding an edge to the new node, as we know it it will be the
    /// only edge connected to that node.
    ///
    /// **Panics** if the given parent node doesn't exist.
    ///
    /// **Panics** if the Graph is at the maximum number of edges for its index.
    pub fn add_child(&mut self, parent: NodeIndex<Ix>, edge: E, node: N)
        -> (EdgeIndex<Ix>, NodeIndex<Ix>)
    {
        let child_node = self.graph.add_node(node);
        let child_edge = self.graph.add_edge(parent, child_node, edge);
        (child_edge, child_node)
    }

    /// Borrow the weight from the node at the given index.
    pub fn node_weight(&self, node: NodeIndex<Ix>) -> Option<&N> {
        self.graph.node_weight(node)
    }

    /// Mutably borrow the weight from the node at the given index.
    pub fn node_weight_mut(&mut self, node: NodeIndex<Ix>) -> Option<&mut N> {
        self.graph.node_weight_mut(node)
    }

    /// Read from the internal node array.
    pub fn raw_nodes(&self) -> RawNodes<N, Ix> {
        self.graph.raw_nodes()
    }

    /// An iterator yielding mutable access to all node weights.
    ///
    /// The order in which weights are yielded matches the order of their node indices.
    pub fn node_weights_mut(&mut self) -> NodeWeightsMut<N, Ix> {
        self.graph.node_weights_mut()
    }

    /// Borrow the weight from the edge at the given index.
    pub fn edge_weight(&self, edge: EdgeIndex<Ix>) -> Option<&E> {
        self.graph.edge_weight(edge)
    }

    /// Mutably borrow the weight from the edge at the given index.
    pub fn edge_weight_mut(&mut self, edge: EdgeIndex<Ix>) -> Option<&mut E> {
        self.graph.edge_weight_mut(edge)
    }

    /// Read from the internal edge array.
    pub fn raw_edges(&self) -> RawEdges<E, Ix> {
        self.graph.raw_edges()
    }

    /// An iterator yielding mutable access to all edge weights.
    ///
    /// The order in which weights are yielded matches the order of their edge indices.
    pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<E, Ix> {
        self.graph.edge_weights_mut()
    }

    /// Index the `Dag` by two indices.
    /// 
    /// Both indices can be either `NodeIndex`s, `EdgeIndex`s or a combination of the two.
    ///
    /// **Panics** if the indices are equal or if they are out of bounds.
    pub fn index_twice_mut<A, B>(&mut self, a: A, b: B)
        -> (&mut <PetGraph<N, E, Ix> as Index<A>>::Output,
            &mut <PetGraph<N, E, Ix> as Index<B>>::Output) where
        PetGraph<N, E, Ix>: IndexMut<A> + IndexMut<B>,
        A: GraphIndex,
        B: GraphIndex,
    {
        self.graph.index_twice_mut(a, b)
    }

    /// Remove the node at the given index from the `Dag` and return it if it exists.
    ///
    /// Note: Calling this may shift (and in turn invalidate) previously returned node indices!
    pub fn remove_node(&mut self, node: NodeIndex<Ix>) -> Option<N> {
        self.graph.remove_node(node)
    }

    /// Remove an edge and return its weight, or `None` if it didn't exist.
    /// 
    /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for the
    /// nodes of **e** and the nodes of another affected edge.
    pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E> {
        self.graph.remove_edge(e)
    }

    /// A **Walker** type that may be used to step through the parents of the given child node.
    ///
    /// Unlike iterator types, **Walker**s do not require borrowing the internal **Graph**. This
    /// makes them useful for traversing the **Graph** while still being able to mutably borrow it.
    ///
    /// If you require an iterator, use one of the **Walker** methods for converting this
    /// **Walker** into a similarly behaving **Iterator** type.
    ///
    /// See the [**Walker**](./walker/trait.Walker.html) trait for more useful methods.
    pub fn parents(&self, child: NodeIndex<Ix>) -> Parents<N, E, Ix> {
        let walk_edges = self.graph.neighbors_directed(child, pg::Incoming).detach();
        Parents {
            walk_edges: walk_edges,
            _node: PhantomData,
            _edge: PhantomData,
        }
    }

    /// A "walker" object that may be used to step through the children of the given parent node.
    ///
    /// Unlike iterator types, **Walker**s do not require borrowing the internal **Graph**. This
    /// makes them useful for traversing the **Graph** while still being able to mutably borrow it.
    ///
    /// If you require an iterator, use one of the **Walker** methods for converting this
    /// **Walker** into a similarly behaving **Iterator** type.
    ///
    /// See the [**Walker**](./walker/trait.Walker.html) trait for more useful methods.
    pub fn children(&self, parent: NodeIndex<Ix>) -> Children<N, E, Ix> {
        let walk_edges = self.graph.neighbors_directed(parent, pg::Outgoing).detach();
        Children {
            walk_edges: walk_edges,
            _node: PhantomData,
            _edge: PhantomData,
        }
    }

    /// A **Walker** type that recursively walks the **Dag** using the given `recursive_fn`.
    ///
    /// See the [**Walker**](./walker/trait.Walker.html) trait for more useful methods.
    pub fn recursive_walk<F>(&self, start: NodeIndex<Ix>, recursive_fn: F)
        -> RecursiveWalk<N, E, Ix, F>
        where F: FnMut(&Self, NodeIndex<Ix>) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)>
    {
        walker::Recursive::new(start, recursive_fn)
    }

}


/// After adding a new edge to the graph, we use this function immediately after to check whether
/// or not we need to check for a cycle.
/// 
/// If our parent *a* has no parents or our child *b* has no children, or if there was already an
/// edge connecting *a* to *b*, we know that adding this edge has not caused the graph to cycle.
fn must_check_for_cycle<N, E, Ix>(dag: &Dag<N, E, Ix>, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool
    where Ix: IndexType,
{
    dag.parents(a).next(dag).is_some() && dag.children(b).next(dag).is_some()
    && dag.find_edge(a, b).is_none()
}


impl<N, E, Ix> Index<NodeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    type Output = N;
    fn index(&self, index: NodeIndex<Ix>) -> &N {
        &self.graph[index]
    }
}

impl<N, E, Ix> IndexMut<NodeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N {
        &mut self.graph[index]
    }
}

impl<N, E, Ix> Index<EdgeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    type Output = E;
    fn index(&self, index: EdgeIndex<Ix>) -> &E {
        &self.graph[index]
    }
}

impl<N, E, Ix> IndexMut<EdgeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType {
    fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E {
        &mut self.graph[index]
    }
}


impl<N, E, Ix> Walker<Dag<N, E, Ix>> for Children<N, E, Ix>
    where Ix: IndexType,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, dag: &Dag<N, E, Ix>) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> {
        self.walk_edges.next(&dag.graph)
    }
}

impl<N, E, Ix> Walker<Dag<N, E, Ix>> for Parents<N, E, Ix>
    where Ix: IndexType,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, dag: &Dag<N, E, Ix>) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> {
        self.walk_edges.next(&dag.graph)
    }
}


impl<Ix> Iterator for EdgeIndices<Ix> where Ix: IndexType {
    type Item = EdgeIndex<Ix>;
    fn next(&mut self) -> Option<EdgeIndex<Ix>> {
        self.indices.next().map(|i| EdgeIndex::new(i))
    }
}


impl<E> ::std::fmt::Display for WouldCycle<E> where E: ::std::fmt::Debug {
    fn fmt(&self, f: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> {
        writeln!(f, "{:?}", self)
    }
}

impl<E> ::std::error::Error for WouldCycle<E> where E: ::std::fmt::Debug + ::std::any::Any {
    fn description(&self) -> &str {
        "Adding this input would have caused the graph to cycle!"
    }
}