1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
//! **daggy** is a directed acyclic graph data structure library. //! //! The most prominent type is [**Dag**](./struct.Dag.html) - a wrapper around [petgraph] //! (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/index.html)'s [**Graph**] //! (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/graph/struct.Graph.html) //! data structure, exposing a refined API targeted towards directed acyclic graph related //! functionality. //! //! The [**Walker** trait](./walker/trait.Walker.html) defines a variety of useful methods for //! traversing any graph type. Its methods behave similarly to iterator types, however **Walker**s //! do not require borrowing the graph. This means that we can still safely mutably borrow from the //! graph whilst we traverse it. #![forbid(unsafe_code)] #![warn(missing_docs)] pub extern crate petgraph; use petgraph as pg; use petgraph::graph::{DefaultIx, GraphIndex, IndexType}; use std::marker::PhantomData; use std::ops::{Index, IndexMut}; pub use petgraph::graph::{EdgeIndex, NodeIndex, EdgeWeightsMut, NodeWeightsMut}; pub use walker::Walker; use petgraph::algo::{DfsSpace, has_path_connecting}; use petgraph::visit::Visitable; pub mod walker; /// The Petgraph to be used internally within the Dag for storing/managing nodes and edges. pub type PetGraph<N, E, Ix> = pg::Graph<N, E, pg::Directed, Ix>; /// Read only access into a **Dag**'s internal node array. pub type RawNodes<'a, N, Ix> = &'a [pg::graph::Node<N, Ix>]; /// Read only access into a **Dag**'s internal edge array. pub type RawEdges<'a, E, Ix> = &'a [pg::graph::Edge<E, Ix>]; /// A Directed acyclic graph (DAG) data structure. /// /// Dag is a thin wrapper around petgraph's `Graph` data structure, providing a refined API for /// dealing specifically with DAGs. /// /// Note: The following documentation is adapted from petgraph's [**Graph** documentation] /// (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/graph/struct.Graph.html). /// /// **Dag** is parameterized over the node weight **N**, edge weight **E** and index type **Ix**. /// /// **NodeIndex** is a type that acts as a reference to nodes, but these are only stable across /// certain operations. **Removing nodes may shift other indices.** Adding kids to the **Dag** /// keeps all indices stable, but removing a node will force the last node to shift its index to /// take its place. /// /// The fact that the node indices in the **Dag** are numbered in a compact interval from 0 to *n*-1 /// simplifies some graph algorithms. /// /// The **Ix** parameter is u32 by default. The goal is that you can ignore this parameter /// completely unless you need a very large **Dag** -- then you can use usize. /// /// The **Dag** also offers methods for accessing the underlying **Graph**, which can be useful /// for taking advantage of petgraph's various graph-related algorithms. #[derive(Clone, Debug)] pub struct Dag<N, E, Ix: IndexType = DefaultIx> { graph: PetGraph<N, E, Ix>, cycle_state: DfsSpace<NodeIndex<Ix>, <PetGraph<N, E, Ix> as Visitable>::Map>, } /// A **Walker** type that can be used to step through the children of some parent node. pub struct Children<N, E, Ix: IndexType> { walk_edges: pg::graph::WalkNeighbors<Ix>, _node: PhantomData<N>, _edge: PhantomData<E>, } /// A **Walker** type that can be used to step through the parents of some child node. pub struct Parents<N, E, Ix: IndexType> { walk_edges: pg::graph::WalkNeighbors<Ix>, _node: PhantomData<N>, _edge: PhantomData<E>, } /// An iterator yielding multiple `EdgeIndex`s, returned by the `Graph::add_edges` method. pub struct EdgeIndices<Ix: IndexType> { indices: ::std::ops::Range<usize>, _phantom: PhantomData<Ix>, } /// An alias to simplify the **Recursive** **Walker** type returned by **Dag**. pub type RecursiveWalk<N, E, Ix, F> = walker::Recursive<Dag<N, E, Ix>, Ix, F>; /// An error returned by the `Dag::add_edge` method in the case that adding an edge would have /// caused the graph to cycle. #[derive(Copy, Clone, Debug)] pub struct WouldCycle<E>(pub E); impl<N, E, Ix> Dag<N, E, Ix> where Ix: IndexType { /// Create a new, empty `Dag`. pub fn new() -> Self { Self::with_capacity(1, 1) } /// Create a new `Dag` with estimated capacity for its node and edge Vecs. pub fn with_capacity(nodes: usize, edges: usize) -> Self { Dag { graph: PetGraph::with_capacity(nodes, edges), cycle_state: DfsSpace::default(), } } /// Removes all nodes and edges from the **Dag**. pub fn clear(&mut self) { self.graph.clear(); } /// The total number of nodes in the **Dag**. pub fn node_count(&self) -> usize { self.graph.node_count() } /// The total number of edgees in the **Dag**. pub fn edge_count(&self) -> usize { self.graph.edge_count() } /// Borrow the `Dag`'s underlying `PetGraph<N, Ix>`. /// All existing indices may be used to index into this `PetGraph` the same way they may be /// used to index into the `Dag`. pub fn graph(&self) -> &PetGraph<N, E, Ix> { &self.graph } /// Take ownership of the `Dag` and return the internal `PetGraph`. /// All existing indices may be used to index into this `PetGraph` the same way they may be /// used to index into the `Dag`. pub fn into_graph(self) -> PetGraph<N, E, Ix> { let Dag { graph, .. } = self; graph } /// Add a new node to the `Dag` with the given weight. /// /// Computes in **O(1)** time. /// /// Returns the index of the new node. /// /// **Note:** If you're adding a new node and immediately adding a single edge to that node from /// some other node, consider using the [add_child](./struct.Dag.html#method.add_child) or /// [add_parent](./struct.Dag.html#method.add_parent) methods instead for better performance. /// /// **Panics** if the Graph is at the maximum number of nodes for its index type. pub fn add_node(&mut self, weight: N) -> NodeIndex<Ix> { self.graph.add_node(weight) } /// Add a new directed edge to the `Dag` with the given weight. /// /// The added edge will be in the direction `a` -> `b` /// /// Checks if the edge would create a cycle in the Graph. /// /// If adding the edge **would not** cause the graph to cycle, the edge will be added and its /// `EdgeIndex` returned. /// /// If adding the edge **would** cause the graph to cycle, the edge will not be added and /// instead a `WouldCycle<E>` error with the given weight will be returned. /// /// In the worst case, petgraph's [`is_cyclic_directed`] /// (http://bluss.github.io/petulant-avenger-graphlibrary/doc/petgraph/algo/fn.is_cyclic_directed.html) /// function is used to check whether or not adding the edge would create a cycle. /// /// **Note:** Dag allows adding parallel ("duplicate") edges. If you want to avoid this, use /// [`update_edge`](./struct.Dag.html#method.update_edge) instead. /// /// **Note:** If you're adding a new node and immediately adding a single edge to that node from /// some other node, consider using the [add_child](./struct.Dag.html#method.add_child) or /// [add_parent](./struct.Dag.html#method.add_parent) methods instead for better performance. /// /// **Panics** if either `a` or `b` do not exist within the **Dag**. /// /// **Panics** if the Graph is at the maximum number of edges for its index type. pub fn add_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> Result<EdgeIndex<Ix>, WouldCycle<E>> { let should_check_for_cycle = must_check_for_cycle(self, a, b); let state = Some(&mut self.cycle_state); if should_check_for_cycle && has_path_connecting(&self.graph, b, a, state) { return Err(WouldCycle(weight)); } Ok(self.graph.add_edge(a, b, weight)) } /// Adds the given directed edges to the `Dag`, each with their own given weight. /// /// The given iterator should yield a `NodeIndex` pair along with a weight for each Edge to be /// added in a tuple. /// /// If we were to describe the tuple as *(a, b, weight)*, the connection would be directed as /// follows: /// /// *a -> b* /// /// This method behaves similarly to the [`add_edge`](./struct.Dag.html#method.add_edge) /// method, however rather than checking whether or not a cycle has been created after adding /// each edge, it only checks after all edges have been added. This makes it a slightly more /// performant and ergonomic option that repeatedly calling `add_edge`. /// /// If adding the edges **would not** cause the graph to cycle, the edges will be added and /// their indices returned in an `EdgeIndices` iterator, yielding indices for each edge in the /// same order that they were given. /// /// If adding the edges **would** cause the graph to cycle, the edges will not be added and /// instead a `WouldCycle<Vec<E>>` error with the unused weights will be returned. The order of /// the returned `Vec` will be the reverse of the given order. /// /// **Note:** Dag allows adding parallel ("duplicate") edges. If you want to avoid this, use /// [`update_edges`](./struct.Dag.html#method.update_edges) instead. /// /// **Note:** If you're adding a series of new nodes and edges to a single node, consider using /// the [add_child](./struct.Dag.html#method.add_child) or [add_parent] /// (./struct.Dag.html#method.add_parent) methods instead for greater convenience. /// /// **Panics** if the Graph is at the maximum number of nodes for its index type. pub fn add_edges<I>(&mut self, edges: I) -> Result<EdgeIndices<Ix>, WouldCycle<Vec<E>>> where I: IntoIterator<Item=(NodeIndex<Ix>, NodeIndex<Ix>, E)>, { let mut num_edges = 0; let mut should_check_for_cycle = false; for (a, b, weight) in edges { // Check whether or not we'll need to check for cycles. if !should_check_for_cycle { if must_check_for_cycle(self, a, b) { should_check_for_cycle = true; } } self.graph.add_edge(a, b, weight); num_edges += 1; } let total_edges = self.edge_count(); let new_edges_range = total_edges-num_edges..total_edges; // Check if adding the edges has created a cycle. if should_check_for_cycle && pg::algo::is_cyclic_directed(&self.graph) { let removed_edges = new_edges_range.rev().filter_map(|i| { let idx = EdgeIndex::new(i); self.graph.remove_edge(idx) }); Err(WouldCycle(removed_edges.collect())) } else { Ok(EdgeIndices { indices: new_edges_range, _phantom: ::std::marker::PhantomData, }) } } /// Update the edge from nodes `a` -> `b` with the given weight. /// /// If the edge doesn't already exist, it will be added using the `add_edge` method. /// /// Please read the [`add_edge`](./struct.Dag.html#method.add_edge) for more important details. /// /// Checks if the edge would create a cycle in the Graph. /// /// Computes in **O(t + e)** time where "t" is the complexity of `add_edge` and e is the number /// of edges connected to the nodes a and b. /// /// Returns the index of the edge, or a `WouldCycle` error if adding the edge would create a /// cycle. /// /// **Note:** If you're adding a new node and immediately adding a single edge to that node from /// some parent node, consider using the [`add_child`](./struct.Dag.html#method.add_child) /// method instead for greater convenience. /// /// **Panics** if the Graph is at the maximum number of nodes for its index type. pub fn update_edge(&mut self, a: NodeIndex<Ix>, b: NodeIndex<Ix>, weight: E) -> Result<EdgeIndex<Ix>, WouldCycle<E>> { if let Some(edge_idx) = self.find_edge(a, b) { if let Some(edge) = self.edge_weight_mut(edge_idx) { *edge = weight; return Ok(edge_idx); } } self.add_edge(a, b, weight) } /// Find and return the index to the edge that describes `a` -> `b` if there is one. /// /// Computes in **O(e')** time, where **e'** is the number of edges connected to the nodes `a` /// and `b`. pub fn find_edge(&self, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> Option<EdgeIndex<Ix>> { self.graph.find_edge(a, b) } /// Access the parent and child nodes for the given `EdgeIndex`. pub fn edge_endpoints(&self, e: EdgeIndex<Ix>) -> Option<(NodeIndex<Ix>, NodeIndex<Ix>)> { self.graph.edge_endpoints(e) } /// Remove all edges. pub fn clear_edges(&mut self) { self.graph.clear_edges() } /// Add a new edge and parent node to the node at the given `NodeIndex`. /// Returns both the edge's `EdgeIndex` and the node's `NodeIndex`. /// /// node -> edge -> child /// /// Computes in **O(1)** time. /// /// This is faster than using `add_node` and `add_edge`. This is because we don't have to check /// if the graph would cycle when adding an edge to the new node, as we know it it will be the /// only edge connected to that node. /// /// **Panics** if the given child node doesn't exist. /// /// **Panics** if the Graph is at the maximum number of edges for its index. pub fn add_parent(&mut self, child: NodeIndex<Ix>, edge: E, node: N) -> (EdgeIndex<Ix>, NodeIndex<Ix>) { let parent_node = self.graph.add_node(node); let parent_edge = self.graph.add_edge(parent_node, child, edge); (parent_edge, parent_node) } /// Add a new edge and child node to the node at the given `NodeIndex`. /// Returns both the edge's `EdgeIndex` and the node's `NodeIndex`. /// /// child -> edge -> node /// /// Computes in **O(1)** time. /// /// This is faster than using `add_node` and `add_edge`. This is because we don't have to check /// if the graph would cycle when adding an edge to the new node, as we know it it will be the /// only edge connected to that node. /// /// **Panics** if the given parent node doesn't exist. /// /// **Panics** if the Graph is at the maximum number of edges for its index. pub fn add_child(&mut self, parent: NodeIndex<Ix>, edge: E, node: N) -> (EdgeIndex<Ix>, NodeIndex<Ix>) { let child_node = self.graph.add_node(node); let child_edge = self.graph.add_edge(parent, child_node, edge); (child_edge, child_node) } /// Borrow the weight from the node at the given index. pub fn node_weight(&self, node: NodeIndex<Ix>) -> Option<&N> { self.graph.node_weight(node) } /// Mutably borrow the weight from the node at the given index. pub fn node_weight_mut(&mut self, node: NodeIndex<Ix>) -> Option<&mut N> { self.graph.node_weight_mut(node) } /// Read from the internal node array. pub fn raw_nodes(&self) -> RawNodes<N, Ix> { self.graph.raw_nodes() } /// An iterator yielding mutable access to all node weights. /// /// The order in which weights are yielded matches the order of their node indices. pub fn node_weights_mut(&mut self) -> NodeWeightsMut<N, Ix> { self.graph.node_weights_mut() } /// Borrow the weight from the edge at the given index. pub fn edge_weight(&self, edge: EdgeIndex<Ix>) -> Option<&E> { self.graph.edge_weight(edge) } /// Mutably borrow the weight from the edge at the given index. pub fn edge_weight_mut(&mut self, edge: EdgeIndex<Ix>) -> Option<&mut E> { self.graph.edge_weight_mut(edge) } /// Read from the internal edge array. pub fn raw_edges(&self) -> RawEdges<E, Ix> { self.graph.raw_edges() } /// An iterator yielding mutable access to all edge weights. /// /// The order in which weights are yielded matches the order of their edge indices. pub fn edge_weights_mut(&mut self) -> EdgeWeightsMut<E, Ix> { self.graph.edge_weights_mut() } /// Index the `Dag` by two indices. /// /// Both indices can be either `NodeIndex`s, `EdgeIndex`s or a combination of the two. /// /// **Panics** if the indices are equal or if they are out of bounds. pub fn index_twice_mut<A, B>(&mut self, a: A, b: B) -> (&mut <PetGraph<N, E, Ix> as Index<A>>::Output, &mut <PetGraph<N, E, Ix> as Index<B>>::Output) where PetGraph<N, E, Ix>: IndexMut<A> + IndexMut<B>, A: GraphIndex, B: GraphIndex, { self.graph.index_twice_mut(a, b) } /// Remove the node at the given index from the `Dag` and return it if it exists. /// /// Note: Calling this may shift (and in turn invalidate) previously returned node indices! pub fn remove_node(&mut self, node: NodeIndex<Ix>) -> Option<N> { self.graph.remove_node(node) } /// Remove an edge and return its weight, or `None` if it didn't exist. /// /// Computes in **O(e')** time, where **e'** is the size of four particular edge lists, for the /// nodes of **e** and the nodes of another affected edge. pub fn remove_edge(&mut self, e: EdgeIndex<Ix>) -> Option<E> { self.graph.remove_edge(e) } /// A **Walker** type that may be used to step through the parents of the given child node. /// /// Unlike iterator types, **Walker**s do not require borrowing the internal **Graph**. This /// makes them useful for traversing the **Graph** while still being able to mutably borrow it. /// /// If you require an iterator, use one of the **Walker** methods for converting this /// **Walker** into a similarly behaving **Iterator** type. /// /// See the [**Walker**](./walker/trait.Walker.html) trait for more useful methods. pub fn parents(&self, child: NodeIndex<Ix>) -> Parents<N, E, Ix> { let walk_edges = self.graph.neighbors_directed(child, pg::Incoming).detach(); Parents { walk_edges: walk_edges, _node: PhantomData, _edge: PhantomData, } } /// A "walker" object that may be used to step through the children of the given parent node. /// /// Unlike iterator types, **Walker**s do not require borrowing the internal **Graph**. This /// makes them useful for traversing the **Graph** while still being able to mutably borrow it. /// /// If you require an iterator, use one of the **Walker** methods for converting this /// **Walker** into a similarly behaving **Iterator** type. /// /// See the [**Walker**](./walker/trait.Walker.html) trait for more useful methods. pub fn children(&self, parent: NodeIndex<Ix>) -> Children<N, E, Ix> { let walk_edges = self.graph.neighbors_directed(parent, pg::Outgoing).detach(); Children { walk_edges: walk_edges, _node: PhantomData, _edge: PhantomData, } } /// A **Walker** type that recursively walks the **Dag** using the given `recursive_fn`. /// /// See the [**Walker**](./walker/trait.Walker.html) trait for more useful methods. pub fn recursive_walk<F>(&self, start: NodeIndex<Ix>, recursive_fn: F) -> RecursiveWalk<N, E, Ix, F> where F: FnMut(&Self, NodeIndex<Ix>) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> { walker::Recursive::new(start, recursive_fn) } } /// After adding a new edge to the graph, we use this function immediately after to check whether /// or not we need to check for a cycle. /// /// If our parent *a* has no parents or our child *b* has no children, or if there was already an /// edge connecting *a* to *b*, we know that adding this edge has not caused the graph to cycle. fn must_check_for_cycle<N, E, Ix>(dag: &Dag<N, E, Ix>, a: NodeIndex<Ix>, b: NodeIndex<Ix>) -> bool where Ix: IndexType, { dag.parents(a).next(dag).is_some() && dag.children(b).next(dag).is_some() && dag.find_edge(a, b).is_none() } impl<N, E, Ix> Index<NodeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType { type Output = N; fn index(&self, index: NodeIndex<Ix>) -> &N { &self.graph[index] } } impl<N, E, Ix> IndexMut<NodeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType { fn index_mut(&mut self, index: NodeIndex<Ix>) -> &mut N { &mut self.graph[index] } } impl<N, E, Ix> Index<EdgeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType { type Output = E; fn index(&self, index: EdgeIndex<Ix>) -> &E { &self.graph[index] } } impl<N, E, Ix> IndexMut<EdgeIndex<Ix>> for Dag<N, E, Ix> where Ix: IndexType { fn index_mut(&mut self, index: EdgeIndex<Ix>) -> &mut E { &mut self.graph[index] } } impl<N, E, Ix> Walker<Dag<N, E, Ix>> for Children<N, E, Ix> where Ix: IndexType, { type Index = Ix; #[inline] fn next(&mut self, dag: &Dag<N, E, Ix>) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> { self.walk_edges.next(&dag.graph) } } impl<N, E, Ix> Walker<Dag<N, E, Ix>> for Parents<N, E, Ix> where Ix: IndexType, { type Index = Ix; #[inline] fn next(&mut self, dag: &Dag<N, E, Ix>) -> Option<(EdgeIndex<Ix>, NodeIndex<Ix>)> { self.walk_edges.next(&dag.graph) } } impl<Ix> Iterator for EdgeIndices<Ix> where Ix: IndexType { type Item = EdgeIndex<Ix>; fn next(&mut self) -> Option<EdgeIndex<Ix>> { self.indices.next().map(|i| EdgeIndex::new(i)) } } impl<E> ::std::fmt::Display for WouldCycle<E> where E: ::std::fmt::Debug { fn fmt(&self, f: &mut ::std::fmt::Formatter) -> Result<(), ::std::fmt::Error> { writeln!(f, "{:?}", self) } } impl<E> ::std::error::Error for WouldCycle<E> where E: ::std::fmt::Debug + ::std::any::Any { fn description(&self) -> &str { "Adding this input would have caused the graph to cycle!" } }