Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
use core::fmt;
use core::ops::{Deref, DerefMut};

/// Pads and aligns a value to the length of a cache line.
///
/// In concurrent programming, sometimes it is desirable to make sure commonly accessed pieces of
/// data are not placed into the same cache line. Updating an atomic value invalides the whole
/// cache line it belongs to, which makes the next access to the same cache line slower for other
/// CPU cores. Use `CachePadded` to ensure updating one piece of data doesn't invalidate other
/// cached data.
///
/// # Size and alignment
///
/// Cache lines are assumed to be N bytes long, depending on the architecture:
///
/// * On x86-64, N = 128.
/// * On all others, N = 64.
///
/// Note that N is just a reasonable guess and is not guaranteed to match the actual cache line
/// length of the machine the program is running on. On modern Intel architectures, spatial
/// prefetcher is pulling pairs of 64-byte cache lines at a time, so we pessimistically assume that
/// cache lines are 128 bytes long.
///
/// The size of `CachePadded<T>` is the smallest multiple of N bytes large enough to accommodate
/// a value of type `T`.
///
/// The alignment of `CachePadded<T>` is the maximum of N bytes and the alignment of `T`.
///
/// # Examples
///
/// Alignment and padding:
///
/// ```
/// use crossbeam_utils::CachePadded;
///
/// let array = [CachePadded::new(1i8), CachePadded::new(2i8)];
/// let addr1 = &*array[0] as *const i8 as usize;
/// let addr2 = &*array[1] as *const i8 as usize;
///
/// assert!(addr2 - addr1 >= 64);
/// assert_eq!(addr1 % 64, 0);
/// assert_eq!(addr2 % 64, 0);
/// ```
///
/// When building a concurrent queue with a head and a tail index, it is wise to place them in
/// different cache lines so that concurrent threads pushing and popping elements don't invalidate
/// each other's cache lines:
///
/// ```
/// use crossbeam_utils::CachePadded;
/// use std::sync::atomic::AtomicUsize;
///
/// struct Queue<T> {
///     head: CachePadded<AtomicUsize>,
///     tail: CachePadded<AtomicUsize>,
///     buffer: *mut T,
/// }
/// ```
#[derive(Clone, Copy, Default, Hash, PartialEq, Eq)]
// Starting from Intel's Sandy Bridge, spatial prefetcher is now pulling pairs of 64-byte cache
// lines at a time, so we have to align to 128 bytes rather than 64.
//
// Sources:
// - https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
// - https://github.com/facebook/folly/blob/1b5288e6eea6df074758f877c849b6e73bbb9fbb/folly/lang/Align.h#L107
#[cfg_attr(target_arch = "x86_64", repr(align(128)))]
#[cfg_attr(not(target_arch = "x86_64"), repr(align(64)))]
pub struct CachePadded<T> {
    value: T,
}

unsafe impl<T: Send> Send for CachePadded<T> {}
unsafe impl<T: Sync> Sync for CachePadded<T> {}

impl<T> CachePadded<T> {
    /// Pads and aligns a value to the length of a cache line.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::CachePadded;
    ///
    /// let padded_value = CachePadded::new(1);
    /// ```
    pub fn new(t: T) -> CachePadded<T> {
        CachePadded::<T> { value: t }
    }

    /// Returns the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use crossbeam_utils::CachePadded;
    ///
    /// let padded_value = CachePadded::new(7);
    /// let value = padded_value.into_inner();
    /// assert_eq!(value, 7);
    /// ```
    pub fn into_inner(self) -> T {
        self.value
    }
}

impl<T> Deref for CachePadded<T> {
    type Target = T;

    fn deref(&self) -> &T {
        &self.value
    }
}

impl<T> DerefMut for CachePadded<T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut self.value
    }
}

impl<T: fmt::Debug> fmt::Debug for CachePadded<T> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("CachePadded")
            .field("value", &self.value)
            .finish()
    }
}

impl<T> From<T> for CachePadded<T> {
    fn from(t: T) -> Self {
        CachePadded::new(t)
    }
}