1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
//! Conrod uses a directed acyclic graph to manage both storing widgets and describing their //! relationships. //! //! The primary type of interest in this module is the [**Graph**](./struct.Graph) type. use daggy; use position::{Axis, Depth, Point, Rect}; use std; use std::any::Any; use std::ops::{Index, IndexMut}; use widget::{self, Widget}; pub use daggy::Walker; pub use self::depth_order::DepthOrder; pub mod algo; pub mod depth_order; /// An alias for our Graph's Edge Index. pub type EdgeIndex = daggy::EdgeIndex<u32>; /// An alias for a tuple containing an associated `Edge/widget::Id` pair. pub type IndexPair = (EdgeIndex, widget::Id); /// A **Walker** over some node's parent nodes. pub type Parents = daggy::Parents<Node, Edge, u32>; /// A **Walker** over some node's child nodes. pub type Children = daggy::Children<Node, Edge, u32>; /// An alias for the iterator yielding both **X** and **Y** **Position** parents. pub type PositionParents = std::iter::Chain<std::option::IntoIter<widget::Id>, std::option::IntoIter<widget::Id>>; /// An alias for some filtered children walker. pub type FilteredChildren = daggy::walker::Filter<Children, fn(&Graph, EdgeIndex, widget::Id) -> bool>; /// An alias for a **Walker** over a node's **Depth** children. pub type DepthChildren = FilteredChildren; /// An alias for a **Walker** over a node's **X Position** children. pub type XPositionChildren = FilteredChildren; /// An alias for a **Walker** over a node's **Y Position** children. pub type YPositionChildren = FilteredChildren; /// An alias for a **Walker** over a node's **X** and **Y** **Position** children respectively. pub type PositionChildren = daggy::walker::Chain<Graph, u32, XPositionChildren, YPositionChildren>; /// An alias for a **Walker** over a node's **Graphic** children. pub type GraphicChildren = FilteredChildren; /// An alias for our Graph's recursive walker. pub type RecursiveWalk<F> = daggy::walker::Recursive<Graph, u32, F>; /// An alias for our Graph's **WouldCycle** error type. pub type WouldCycle = daggy::WouldCycle<Edge>; /// The state type that we'll dynamically cast to and from `Any` for storage within the cache. #[derive(Debug)] pub struct UniqueWidgetState<State, Style> where State: Any, Style: Any, { /// A **Widget**'s unique "State". pub state: State, /// A **Widget**'s unique "Style". pub style: Style, } /// A container for caching a Widget's state inside a Graph Node. #[derive(Debug)] pub struct Container { /// Dynamically stored widget state. pub maybe_state: Option<Box<dyn Any + Send>>, /// The unique `TypeId` associated with the `Widget::State`. /// /// This is equal to `std::any::TypeId::of::<Widget::State>()`. pub type_id: std::any::TypeId, /// The rectangle describing the Widget's area. pub rect: Rect, /// The depth at which the widget will be rendered comparatively to its siblings. pub depth: Depth, /// The area in which child widgets are placed. pub kid_area: widget::KidArea, /// If widget is draggable and is being dragged, this is where it started pub maybe_dragged_from: Option<Point>, /// Whether or not the widget is a "Floating" widget. /// /// See the `Widget::float` docs for an explanation of what this means. pub maybe_floating: Option<widget::Floating>, /// Whether or not children widgets should be cropped to the `kid_area`. pub crop_kids: bool, /// Scroll related state (is only `Some` if this axis is scrollable). pub maybe_x_scroll_state: Option<widget::scroll::StateX>, /// Scroll related state (is only `Some` if this axis is scrollable). pub maybe_y_scroll_state: Option<widget::scroll::StateY>, /// Represents the Widget's position within the overall instantiation ordering of the widgets. /// /// i.e. if foo's `instantiation_order_idx` is lower than bar's, it means that foo was /// instantiated before bar. pub instantiation_order_idx: usize, /// A function specified by the widget to use when determining whether or not a point is over /// it. /// /// NOTE: See `Wiget::is_over` for more details and a note on possible future plans. pub is_over: IsOverFn, } /// A wrapper around a `widget::IsOverFn` to make implementing `Debug` easier for `Container`. #[derive(Copy, Clone)] pub struct IsOverFn(pub widget::IsOverFn); impl std::fmt::Debug for IsOverFn { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result { write!(f, "IsOverFn") } } /// A node for use within the **Graph**. #[derive(Debug)] pub enum Node { /// A widget constructed by a user. Widget(Container), /// A placeholder node - used when reserving a place for a **Widget** within the **Graph**. /// /// It may also be used to represent a node that was once pre-occuppied by a widget who was not /// `set` during the last `set_widgets` stage. Placeholder, } /// An edge between nodes within the UI Graph. #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum Edge { /// Describes the relative positioning of widgets. /// /// When adding an edge *a -> b*, *b* is positioned relatively to *a*. Position(Axis), /// Describes the rendering order of the widgets. /// /// When adding an edge *a -> b*, *a* is the parent of (and will be rendered before) *b*. Depth, /// Describes when a widget is used solely as a graphical element for another widget. /// /// When adding an edge *a -> b*, *b* is considered to be a graphical element of *a*. This /// implies several things about *b*: /// /// - If *b* is picked within either **Graph::pick_widget** or /// **Graph::pick_top_scrollable_widget**, it will instead return the index for *a*. /// - When determining the **Graph::scroll_offset** for *b*, *a*'s scrolling (if it is /// scrollable, that is) will be skipped. /// - Any **Graphic** child of *b* will be considered as a **Graphic** child of *a*. Graphic, } /// The number of different variants within the **Edge** enum. pub const NUM_EDGE_VARIANTS: usize = 4; /// An alias for the petgraph::Graph used within our Ui Graph. type Dag = daggy::Dag<Node, Edge>; /// Stores the dynamic state of a UI tree of Widgets. #[derive(Debug)] pub struct Graph { /// Cached widget state in a directed acyclic graph whose edges describe the rendering tree and /// positioning. dag: Dag, } impl Container { /// Borrow the **Container**'s unique widget State and Style if there is any. pub fn state_and_style<State, Style>(&self) -> Option<&UniqueWidgetState<State, Style>> where State: Any + 'static, Style: Any + 'static, { self.maybe_state.as_ref().and_then(|boxed_state| boxed_state.downcast_ref()) } /// Same as [**Container::state_and_style**](./struct.Container#method.state_and_style) but /// accessed using a **Widget** type parameter instead of the unique State and Style types. pub fn unique_widget_state<W>(&self) -> Option<&UniqueWidgetState<W::State, W::Style>> where W: Widget, W::State: Any + 'static, W::Style: Any + 'static, { self.state_and_style::<W::State, W::Style>() } } impl Node { /// Whether or not the **Node** is of the **Widget** variant. pub fn is_widget(&self) -> bool { if let Node::Widget(_) = *self { true } else { false } } } impl Graph { /// A new empty **Graph**. pub fn new() -> Self { Graph { dag: Dag::new(), } } /// A new **Graph** with the given node capacity. /// /// We know that there can be no more than three parents per node as the public API enforces a /// maximum of one Depth, Position and Graphic parent each. Thus, we can assume an edge /// capacity of exactly three times the given node capacity. pub fn with_node_capacity(n_nodes: usize) -> Self { let n_edges = n_nodes * NUM_EDGE_VARIANTS; Graph { dag: Dag::with_capacity(n_nodes, n_edges), } } /// Removes all **Node**s and **Edge**s from the **Graph**. pub fn clear(&mut self) { self.dag.clear() } /// The total number of **Node**s in the **Graph**. pub fn node_count(&self) -> usize { self.dag.node_count() } /// The total number of **Node::Widget**s in the **Graph**. pub fn widget_count(&self) -> usize { (0..self.node_count()) .filter(|&i| self[widget::Id::new(i)].is_widget()) .count() } /// The total number of **Edge**s in the **Graph**. pub fn edge_count(&self) -> usize { self.dag.edge_count() } /// The current capacity for the **Graph**'s internal node `Vec`. pub fn node_capacity(&self) -> usize { unimplemented!(); } /// Add the given **Node** to the graph. /// /// Computes in **O(1)** time. /// /// Returns the index of the new node. fn add_node(&mut self, node: Node) -> widget::Id { self.dag.add_node(node) } /// Set the given **Edge** within the graph. /// /// The added edge will be in the direction `a` -> `b` /// /// There may only ever be one **Edge** of the given variant between `a` -> `b`. In turn, the /// **Graph** could be described as "three rose trees super imposed on top of one another, /// where there is one tree for each edge variant". /// /// Checks if the edge would create a cycle in the **Graph**. /// /// If adding the edge **would not** cause the graph to cycle, the edge will be added and its /// `EdgeIndex` returned. /// /// If adding the edge **would** cause the graph to cycle, the edge will not be added and /// instead a `WouldCycle` error with the given weight will be returned. /// /// **Panics** if either `a` or `b` do not exist within the **Graph**. /// /// **Panics** if the **Graph** is at the maximum number of nodes for its index type. fn set_edge(&mut self, a: widget::Id, b: widget::Id, edge: Edge) -> Result<EdgeIndex, WouldCycle> { // Check to see if the node already has some matching incoming edge. // Keep it if it's the one we want. Otherwise, remove any incoming edge that matches the given // edge kind but isn't coming from the node that we desire. let mut parents = self.parents(b); let mut already_set = None; while let Some((in_edge_idx, in_node_idx)) = parents.next(self) { if edge == self[in_edge_idx] { if in_node_idx == a { already_set = Some(in_edge_idx); } else { self.remove_edge(in_edge_idx); } // Note that we only need to check for *one* edge as there can only ever be one // parent edge of any kind for each node. We know this, as this method is the only // function used by a public method that adds edges. break; } } // If we don't already have an incoming edge from the requested parent, add one. match already_set { Some(edge_idx) => Ok(edge_idx), None => self.dag.add_edge(a, b, edge), } } /// Remove and return the **Edge** at the given index. /// /// Return `None` if it didn't exist. fn remove_edge(&mut self, idx: EdgeIndex) -> Option<Edge> { self.dag.remove_edge(idx) } /// Remove the parent edge of the given kind for the given index if there is one. /// /// Returns `true` if an edge was removed. /// /// Returns `false` if no edges were removed. fn remove_parent_edge(&mut self, id: widget::Id, edge: Edge) -> bool { if let Some((edge_idx, _)) = self.parents(id).find(self, |g, e, _| g[e] == edge) { self.remove_edge(edge_idx); return true; } false } /// Add a new placeholder node and return it's `widget::Id` into the `Graph`. /// /// This method is used by the `widget::set_widget` function when some internal widget does not /// yet have it's own `widget::Id`. pub fn add_placeholder(&mut self) -> widget::Id { self.add_node(Node::Placeholder) } /// Borrow the node at the given **widget::Id** if there is one. pub fn node(&self, idx: widget::Id) -> Option<&Node> { self.dag.node_weight(idx) } /// Mutably borrow the node at the given **widget::Id** if there is one. pub fn node_mut(&mut self, idx: widget::Id) -> Option<&mut Node> { self.dag.node_weight_mut(idx) } /// Borrow the edge at the given **EdgeIndex** if there is one. pub fn edge(&self, idx: EdgeIndex) -> Option<&Edge> { self.dag.edge_weight(idx) } /// Mutably borrow the edge at the given **EdgeIndex** if there is one. pub fn edge_mut(&mut self, idx: EdgeIndex) -> Option<&mut Edge> { self.dag.edge_weight_mut(idx) } /// Return the parent and child nodes on either end of the **Edge** at the given index. pub fn edge_endpoints(&self, idx: EdgeIndex) -> Option<(widget::Id, widget::Id)> { self.dag.edge_endpoints(idx) } /// If there is a Widget for the given index, return a reference to it. pub fn widget(&self, idx: widget::Id) -> Option<&Container> { self.node(idx).and_then(|node| match *node { Node::Widget(ref container) => Some(container), _ => None, }) } /// If there is a Widget for the given Id, return a mutable reference to it. pub fn widget_mut(&mut self, idx: widget::Id) -> Option<&mut Container> { self.node_mut(idx).and_then(|node| match *node { Node::Widget(ref mut container) => Some(container), _ => None, }) } /// A **Walker** type that may be used to step through the parents of the given child node. pub fn parents(&self, child: widget::Id) -> Parents { self.dag.parents(child) } /// A **Walker** type that recursively walks the **Graph** using the given `recursive_fn`. /// /// **Panics** If the given start index does not exist within the **Graph**. pub fn recursive_walk<F>(&self, start: widget::Id, recursive_fn: F) -> RecursiveWalk<F> where F: FnMut(&Self, widget::Id) -> Option<(EdgeIndex, widget::Id)> { RecursiveWalk::new(start, recursive_fn) } /// If the widget at the given index has some parent along an **Edge** of the given variant, /// return an index to it. pub fn edge_parent(&self, idx: widget::Id, edge: Edge) -> Option<widget::Id> { self.parents(idx).find(self, |g, e, _| g[e] == edge).map(|(_, n)| n) } /// Return the index of the parent along the given widget's **Depth** **Edge**. pub fn depth_parent(&self, idx: widget::Id) -> Option<widget::Id> { self.edge_parent(idx, Edge::Depth) } /// Return the index of the parent along the given widget's **Position** **Edge**. pub fn x_position_parent(&self, idx: widget::Id) -> Option<widget::Id> { self.edge_parent(idx, Edge::Position(Axis::X)) } /// Return the index of the parent along the given widget's **Position** **Edge**. pub fn y_position_parent(&self, idx: widget::Id) -> Option<widget::Id> { self.edge_parent(idx, Edge::Position(Axis::Y)) } /// Produces an iterator yielding the parents along both the **X** and **Y** **Position** /// **Edge**s respectively. pub fn position_parents(&self, idx: widget::Id) -> PositionParents { self.x_position_parent(idx).into_iter().chain(self.y_position_parent(idx)) } /// Return the index of the parent along the given widget's **Graphic** **Edge**. pub fn graphic_parent(&self, idx: widget::Id) -> Option<widget::Id> { self.edge_parent(idx, Edge::Graphic) } /// A **Walker** type that recursively walks **Depth** parents starting from the given node. pub fn depth_parent_recursion(&self, idx: widget::Id) -> RecursiveWalk<fn(&Graph, widget::Id) -> Option<IndexPair>> { fn depth_edge_parent(graph: &Graph, idx: widget::Id) -> Option<IndexPair> { graph.parents(idx).find(graph, |g, e, _| g[e] == Edge::Depth) } self.recursive_walk(idx, depth_edge_parent) } /// A **Walker** type that recursively walks **X** **Position** parents starting from the given /// node. pub fn x_position_parent_recursion(&self, idx: widget::Id) -> RecursiveWalk<fn(&Graph, widget::Id) -> Option<IndexPair>> { fn x_position_edge_parent(graph: &Graph, idx: widget::Id) -> Option<IndexPair> { graph.parents(idx).find(graph, |g, e, _| g[e] == Edge::Position(Axis::X)) } self.recursive_walk(idx, x_position_edge_parent) } /// A **Walker** type that recursively walks **Y** **Position** parents starting from the given /// node. pub fn y_position_parent_recursion(&self, idx: widget::Id) -> RecursiveWalk<fn(&Graph, widget::Id) -> Option<IndexPair>> { fn y_position_edge_parent(graph: &Graph, idx: widget::Id) -> Option<IndexPair> { graph.parents(idx).find(graph, |g, e, _| g[e] == Edge::Position(Axis::Y)) } self.recursive_walk(idx, y_position_edge_parent) } /// A **Walker** type that recursively walks **Graphic** parents starting from the given node. pub fn graphic_parent_recursion(&self, idx: widget::Id) -> RecursiveWalk<fn(&Graph, widget::Id) -> Option<IndexPair>> { fn graphic_edge_parent(graph: &Graph, idx: widget::Id) -> Option<IndexPair> { graph.parents(idx).find(graph, |g, e, _| g[e] == Edge::Graphic) } self.recursive_walk(idx, graphic_edge_parent) } /// A **Walker** type that recursively walks **Depth** parents that are scrollable along the /// *y* axis for the given node. pub fn scrollable_y_parent_recursion(&self, idx: widget::Id) -> RecursiveWalk<fn(&Graph, widget::Id) -> Option<IndexPair>> { fn scrollable_y_parent(graph: &Graph, id: widget::Id) -> Option<IndexPair> { let mut depth_parents = graph.depth_parent_recursion(id); while let Some((e, n)) = depth_parents.next(graph) { if let Some(parent) = graph.widget(n) { if parent.maybe_y_scroll_state.is_some() { return Some((e, n)); } } } None } self.recursive_walk(idx, scrollable_y_parent) } /// A **Walker** type that recursively walks **Depth** parents that are scrollable along the /// *x* axis for the given node. pub fn scrollable_x_parent_recursion(&self, idx: widget::Id) -> RecursiveWalk<fn(&Graph, widget::Id) -> Option<IndexPair>> { fn scrollable_x_parent(graph: &Graph, id: widget::Id) -> Option<IndexPair> { let mut depth_parents = graph.depth_parent_recursion(id); while let Some((e, n)) = depth_parents.next(graph) { if let Some(parent) = graph.widget(n) { if parent.maybe_x_scroll_state.is_some() { return Some((e, n)); } } } None } self.recursive_walk(idx, scrollable_x_parent) } /// A **Walker** type that may be used to step through the children of the given parent node. pub fn children(&self, parent: widget::Id) -> Children { self.dag.children(parent) } /// For walking the **Depth** children of the given parent node. pub fn depth_children(&self, idx: widget::Id) -> DepthChildren { self.children(idx).filter(is_depth_edge) } /// For walking the **Position(X)** children of the given parent node. pub fn x_position_children(&self, idx: widget::Id) -> XPositionChildren { self.children(idx).filter(is_x_position_edge) } /// For walking the **Position(Y)** children of the given parent node. pub fn y_position_children(&self, idx: widget::Id) -> YPositionChildren { self.children(idx).filter(is_y_position_edge) } /// For walking the **Position** children of the given parent node. /// /// This first walks the **Axis::X** children, before walking the **Axis::Y** children. pub fn position_children(&self, idx: widget::Id) -> PositionChildren { self.x_position_children(idx).chain(self.y_position_children(idx)) } /// For walking the **Graphic** children of the given parent node. pub fn graphic_children(&self, idx: widget::Id) -> GraphicChildren { self.children(idx).filter(is_graphic_edge) } /// Does the given edge type exist between the nodes `parent` -> `child`. /// /// Returns `false` if either of the given node indices do not exist. pub fn does_edge_exist<F>(&self, parent: widget::Id, child: widget::Id, is_edge: F) -> bool where F: Fn(Edge) -> bool, { self.parents(child).any(self, |g, e, n| n == parent && is_edge(g[e])) } /// Does a **Edge::Depth** exist between the nodes `parent` -> `child`. /// /// Returns `false` if either of the given node indices do not exist. pub fn does_depth_edge_exist(&self, parent: widget::Id, child: widget::Id) -> bool { self.does_edge_exist(parent, child, |e| e == Edge::Depth) } /// Does a **Edge::Position** exist between the nodes `parent` -> `child`. /// /// Returns `false` if either of the given node indices do not exist. pub fn does_position_edge_exist(&self, parent: widget::Id, child: widget::Id) -> bool { let is_edge = |e| e == Edge::Position(Axis::X) || e == Edge::Position(Axis::Y); self.does_edge_exist(parent, child, is_edge) } /// Does a **Edge::Graphic** exist between the nodes `parent` -> `child`. /// /// Returns `false` if either of the given node indices do not exist. pub fn does_graphic_edge_exist(&self, parent: widget::Id, child: widget::Id) -> bool { self.does_edge_exist(parent, child, |e| e == Edge::Graphic) } /// Are the given `parent` and `child` nodes connected by a single chain of edges of the given /// kind? /// /// i.e. `parent` -> x -> y -> `child`. /// /// Returns `false` if either of the given node indices do not exist. pub fn does_recursive_edge_exist<F>(&self, parent: widget::Id, child: widget::Id, is_edge: F) -> bool where F: Fn(Edge) -> bool, { self.recursive_walk(child, |g, n| g.parents(n).find(g, |g, e, _| is_edge(g[e]))) .any(self, |_, _, n| n == parent) } /// Are the given `parent` and `child` nodes connected by a single chain of **Depth** edges? /// /// i.e. `parent` -> x -> y -> `child`. /// /// Returns `false` if either of the given node indices do not exist. pub fn does_recursive_depth_edge_exist(&self, parent: widget::Id, child: widget::Id) -> bool { self.does_recursive_edge_exist(parent, child, |e| e == Edge::Depth) } // FIXME: This only recurses down the *first* edge that satisfies the predicate, whereas we // want to check *every* position parent edge. This means we need to do a DFS or BFS over // position edges from the parent node until we find the child node. // /// // /// Are the given `parent` and `child` nodes connected by a single chain of **Position** edges? // /// // /// i.e. `parent` -> x -> y -> `child`. // /// // /// Returns `false` if either of the given node indices do not exist. // pub fn does_recursive_position_edge_exist<P, C>(&self, parent: P, child: C) -> bool // where P: GraphIndex, // C: GraphIndex, // { // let is_edge = |e| e == Edge::Position(Axis::X) || e == Edge::Position(Axis::Y); // self.does_recursive_edge_exist(parent, child, is_edge) // } /// Are the given `parent` and `child` nodes connected by a single chain of **Graphic** edges? /// /// i.e. `parent` -> x -> y -> `child`. /// /// Returns `false` if either of the given node indices do not exist. pub fn does_recursive_graphic_edge_exist(&self, parent: widget::Id, child: widget::Id) -> bool { self.does_recursive_edge_exist(parent, child, |e| e == Edge::Graphic) } /// Cache some `PreUpdateCache` widget data into the graph. /// /// This is called (via the `ui` module) from within the `widget::set_widget` function prior to /// the `Widget::update` method being called. /// /// This is done so that if this Widget were to internally `set` some other `Widget`s within /// its own `update` method, this `Widget`s positioning and dimension data already exists /// within the `Graph` for reference. pub fn pre_update_cache(&mut self, root: widget::Id, widget: widget::PreUpdateCache, instantiation_order_idx: usize) { let widget::PreUpdateCache { type_id, id, maybe_parent_id, maybe_x_positioned_relatively_id, maybe_y_positioned_relatively_id, rect, depth, kid_area, maybe_dragged_from, maybe_floating, crop_kids, maybe_x_scroll_state, maybe_y_scroll_state, maybe_graphics_for, is_over, } = widget; assert!(self.node(id).is_some(), "No node found for the given widget::Id {:?}", id); // Construct a new `Container` to place in the `Graph`. let new_container = || Container { maybe_state: None, type_id: type_id, rect: rect, depth: depth, kid_area: kid_area, maybe_dragged_from: maybe_dragged_from, maybe_floating: maybe_floating, crop_kids: crop_kids, maybe_x_scroll_state: maybe_x_scroll_state, maybe_y_scroll_state: maybe_y_scroll_state, instantiation_order_idx: instantiation_order_idx, is_over: IsOverFn(is_over), }; // Retrieves the widget's parent index. // // `panic!` if the widget does not exist within the graph. This should rarely be the case // as all existing `widget::Id`s should be generated from the graph itself. // // This should only be `None` if the widget is the `root` node (i.e. the `Window` widget). let maybe_parent_id = |graph: &mut Self| match maybe_parent_id { Some(parent_id) => match graph.node(parent_id).is_some() { true => Some(parent_id), false => panic!("No node found for the given parent widget::Id {:?}", parent_id), }, // Check that this node is not the root node before using the root node as the parent. None => if id == root { None } else { Some(root) }, }; // Ensure that we have an `Edge::Depth` in the graph representing the parent. if let Some(parent_id) = maybe_parent_id(self) { self.set_edge(parent_id, id, Edge::Depth).unwrap(); } match &mut self.dag[id] { // If the node is currently a `Placeholder`, construct a new container and use this // to set it as the `Widget` variant. node @ &mut Node::Placeholder => *node = Node::Widget(new_container()), // Otherwise, update the data in the container that already exists. &mut Node::Widget(ref mut container) => { // If the container already exists with the state of some other kind of // widget, we can assume there's been a mistake with the given Id. // // TODO: It might be overkill to panic here. assert!(container.type_id == type_id, "A widget of a different type already exists at the given id \ ({:?}). You tried to insert a widget with state of type {:?}, \ however the existing widget state is of type {:?}. Check your \ `WidgetId`s for errors.", id, &type_id, container.type_id); container.type_id = type_id; container.rect = rect; container.depth = depth; container.kid_area = kid_area; container.maybe_dragged_from = maybe_dragged_from; container.maybe_floating = maybe_floating; container.crop_kids = crop_kids; container.maybe_x_scroll_state = maybe_x_scroll_state; container.maybe_y_scroll_state = maybe_y_scroll_state; container.instantiation_order_idx = instantiation_order_idx; container.is_over = IsOverFn(is_over); }, } // Now that we've updated the widget's cached data, we need to check if we should add any // `Edge::Position`s. // // If the widget is *not* positioned relatively to any other widget, we should ensure that // there are no incoming `Position` edges. // X if let Some(relative_id) = maybe_x_positioned_relatively_id { self.set_edge(relative_id, id, Edge::Position(Axis::X)).unwrap(); } else { self.remove_parent_edge(id, Edge::Position(Axis::X)); } // Y if let Some(relative_id) = maybe_y_positioned_relatively_id { self.set_edge(relative_id, id, Edge::Position(Axis::Y)).unwrap(); } else { self.remove_parent_edge(id, Edge::Position(Axis::Y)); } // Check whether or not the widget is a graphics element for some other widget. if let Some(graphic_parent_id) = maybe_graphics_for { self.set_edge(graphic_parent_id, id, Edge::Graphic).unwrap(); // If not, ensure that there is no parent **Graphic** edge from the widget. } else { self.remove_parent_edge(id, Edge::Graphic); } } /// Cache some `PostUpdateCache` widget data into the graph. /// /// This is called (via the `ui` module) from within the `widget::set_widget` function after /// the `Widget::update` method is called and some new state is returned. pub fn post_update_cache<W>(&mut self, widget: widget::PostUpdateCache<W>) where W: Widget, W::State: 'static, W::Style: 'static, { let widget::PostUpdateCache { id, state, style, .. } = widget; // We know that their must be a widget::Id for this id, as `Graph::pre_update_cache` will // always be called prior to this method being called. if let Some(ref mut container) = self.widget_mut(id) { // Construct the `UniqueWidgetState` ready to store as an `Any` within the container. let unique_state: UniqueWidgetState<W::State, W::Style> = UniqueWidgetState { state: state, style: style, }; container.maybe_state = Some(Box::new(unique_state)); } } } fn is_depth_edge(g: &Graph, e: EdgeIndex, _: widget::Id) -> bool { g[e] == Edge::Depth } fn is_x_position_edge(g: &Graph, e: EdgeIndex, _: widget::Id) -> bool { g[e] == Edge::Position(Axis::X) } fn is_y_position_edge(g: &Graph, e: EdgeIndex, _: widget::Id) -> bool { g[e] == Edge::Position(Axis::Y) } fn is_graphic_edge(g: &Graph, e: EdgeIndex, _: widget::Id) -> bool { g[e] == Edge::Graphic } impl Walker<Graph> for Children { type Index = u32; #[inline] fn next(&mut self, graph: &Graph) -> Option<(EdgeIndex, widget::Id)> { self.next(&graph.dag) } } impl Walker<Graph> for Parents { type Index = u32; #[inline] fn next(&mut self, graph: &Graph) -> Option<(EdgeIndex, widget::Id)> { self.next(&graph.dag) } } impl ::std::ops::Index<widget::Id> for Graph { type Output = Node; fn index<'a>(&'a self, id: widget::Id) -> &'a Node { self.node(id).unwrap() } } impl ::std::ops::IndexMut<widget::Id> for Graph { fn index_mut<'a>(&'a mut self, id: widget::Id) -> &'a mut Node { self.node_mut(id).unwrap() } } impl Index<EdgeIndex> for Graph { type Output = Edge; fn index<'a>(&'a self, idx: EdgeIndex) -> &'a Edge { self.edge(idx).unwrap() } } impl IndexMut<EdgeIndex> for Graph { fn index_mut<'a>(&'a mut self, idx: EdgeIndex) -> &'a mut Edge { self.edge_mut(idx).unwrap() } }