Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*!
Contains everything related to vertex sources.

When you draw, you need to pass one or several sources of vertex attributes. This is done with
the first parameter to the `draw` function.

## Vertex

The main trait of this module is `Vertex`, which must be implemented on structs whose instances
describe individual vertices. The trait is unsafe to implement, so you are encouraged to use the
`implement_vertex!` macro instead:

```
# #[macro_use]
# extern crate glium;
# extern crate glutin;
# fn main() {
#[derive(Copy, Clone)]
struct MyVertex {
    position: [f32; 3],
    texcoords: [f32; 2],
}

// you must pass the list of members to the macro
implement_vertex!(MyVertex, position, texcoords);
# }
```

## Vertex buffer

Once you have a struct that implements the `Vertex` trait, you can build an array of vertices and
upload it to the video memory by creating a `VertexBuffer`.

```no_run
# let display: glium::Display = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() };
# #[derive(Copy, Clone)]
# struct MyVertex {
#     position: [f32; 3],
#     texcoords: [f32; 2],
# }
# impl glium::vertex::Vertex for MyVertex {
#     fn build_bindings() -> glium::vertex::VertexFormat { unimplemented!() }
# }
let data = &[
    MyVertex {
        position: [0.0, 0.0, 0.4],
        texcoords: [0.0, 1.0]
    },
    MyVertex {
        position: [12.0, 4.5, -1.8],
        texcoords: [1.0, 0.5]
    },
    MyVertex {
        position: [-7.124, 0.1, 0.0],
        texcoords: [0.0, 0.4]
    },
];

let vertex_buffer = glium::vertex::VertexBuffer::new(&display, data);
```

## Drawing

When you draw, you can pass either a single vertex source or a tuple of multiple sources.
Each source can be:

 - A reference to a `VertexBuffer`.
 - A slice of a vertex buffer, by calling `vertex_buffer.slice(start .. end).unwrap()`.
 - A vertex buffer where each element corresponds to an instance, by
   calling `vertex_buffer.per_instance()`.
 - The same with a slice, by calling `vertex_buffer.slice(start .. end).unwrap().per_instance()`.
 - A marker indicating a number of vertex sources, with `glium::vertex::EmptyVertexAttributes`.
 - A marker indicating a number of instances, with `glium::vertex::EmptyInstanceAttributes`.

```no_run
# use glium::Surface;
# let display: glium::Display = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() };
# #[derive(Copy, Clone)]
# struct MyVertex { position: [f32; 3], texcoords: [f32; 2], }
# impl glium::vertex::Vertex for MyVertex {
#     fn build_bindings() -> glium::vertex::VertexFormat { unimplemented!() }
# }
# let program: glium::program::Program = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() };
# let indices = glium::index::NoIndices(glium::index::PrimitiveType::TrianglesList);
# let uniforms = glium::uniforms::EmptyUniforms;
# let vertex_buffer: glium::vertex::VertexBuffer<MyVertex> = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() };
# let vertex_buffer2: glium::vertex::VertexBuffer<MyVertex> = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() };
# let mut frame = display.draw();
// drawing with a single vertex buffer
frame.draw(&vertex_buffer, &indices, &program, &uniforms, &Default::default()).unwrap();

// drawing with two parallel vertex buffers
frame.draw((&vertex_buffer, &vertex_buffer2), &indices, &program,
           &uniforms, &Default::default()).unwrap();

// drawing without a vertex source
frame.draw(glium::vertex::EmptyVertexAttributes { len: 12 }, &indices, &program,
           &uniforms, &Default::default()).unwrap();

// drawing a slice of a vertex buffer
frame.draw(vertex_buffer.slice(6 .. 24).unwrap(), &indices, &program,
           &uniforms, &Default::default()).unwrap();

// drawing slices of two vertex buffers
frame.draw((vertex_buffer.slice(6 .. 24).unwrap(), vertex_buffer2.slice(128 .. 146).unwrap()),
           &indices, &program, &uniforms, &Default::default()).unwrap();

// treating `vertex_buffer2` as a source of attributes per-instance instead of per-vertex
frame.draw((&vertex_buffer, vertex_buffer2.per_instance().unwrap()), &indices,
           &program, &uniforms, &Default::default()).unwrap();

// instancing without any per-instance attribute
frame.draw((&vertex_buffer, glium::vertex::EmptyInstanceAttributes { len: 36 }), &indices,
           &program, &uniforms, &Default::default()).unwrap();
```

Note that if you use `index::EmptyIndices` as indices the length of all vertex sources must
be the same, or a `DrawError::VerticesSourcesLengthMismatch` will be produced.

In all situation, the length of all per-instance sources must match, or
`DrawError::InstancesCountMismatch` will be returned.

# Transform feedback

Transform feedback allows you to write in a buffer the list of primitives that are generated by
the GPU.

To use it, you must first create a `TransformFeedbackSession` with
`TransformFeedbackSession::new()`. This function requires you to pass a buffer of the correct
type and a program. Then you must pass the `&TransformFeedbackSession` to the draw parameters.
The program you use when drawing must be the same as you the one you created the session
with, or else you will get an error.

*/
use std::iter::Chain;
use std::option::IntoIter;

pub use self::buffer::{VertexBuffer, VertexBufferAny};
pub use self::buffer::VertexBufferSlice;
pub use self::buffer::CreationError as BufferCreationError;
pub use self::format::{AttributeType, VertexFormat};
pub use self::transform_feedback::{is_transform_feedback_supported, TransformFeedbackSession};

use buffer::BufferAnySlice;
use CapabilitiesSource;

mod buffer;
mod format;
mod transform_feedback;

/// Describes the source to use for the vertices when drawing.
#[derive(Clone)]
pub enum VerticesSource<'a> {
    /// A buffer uploaded in the video memory.
    ///
    /// The second parameter is the number of vertices in the buffer.
    ///
    /// The third parameter tells whether or not this buffer is "per instance" (true) or
    /// "per vertex" (false).
    VertexBuffer(BufferAnySlice<'a>, &'a VertexFormat, bool),

    /// A marker indicating a "phantom list of attributes".
    Marker {
        /// Number of attributes.
        len: usize,

        /// Whether or not this buffer is "per instance" (true) or "per vertex" (false).
        per_instance: bool,
    },
}

/// Marker that can be passed instead of a buffer to indicate an empty list of buffers.
pub struct EmptyVertexAttributes {
    /// Number of phantom vertices.
    pub len: usize,
}

impl<'a> Into<VerticesSource<'a>> for EmptyVertexAttributes {
    #[inline]
    fn into(self) -> VerticesSource<'a> {
        VerticesSource::Marker { len: self.len, per_instance: false }
    }
}

/// Marker that can be passed instead of a buffer to indicate an empty list of buffers.
pub struct EmptyInstanceAttributes {
    /// Number of phantom vertices.
    pub len: usize,
}

impl<'a> Into<VerticesSource<'a>> for EmptyInstanceAttributes {
    #[inline]
    fn into(self) -> VerticesSource<'a> {
        VerticesSource::Marker { len: self.len, per_instance: true }
    }
}

/// Marker that instructs glium that the buffer is to be used per instance.
pub struct PerInstance<'a>(BufferAnySlice<'a>, &'a VertexFormat);

impl<'a> Into<VerticesSource<'a>> for PerInstance<'a> {
    #[inline]
    fn into(self) -> VerticesSource<'a> {
        VerticesSource::VertexBuffer(self.0, self.1, true)
    }
}

/// Objects that describe multiple vertex sources.
pub trait MultiVerticesSource<'a> {
    /// Iterator that enumerates each source.
    type Iterator: Iterator<Item = VerticesSource<'a>>;

    /// Iterates over the `VerticesSource`.
    fn iter(self) -> Self::Iterator;
}

impl<'a, T> MultiVerticesSource<'a> for T
    where T: Into<VerticesSource<'a>>
{
    type Iterator = IntoIter<VerticesSource<'a>>;

    #[inline]
    fn iter(self) -> IntoIter<VerticesSource<'a>> {
        Some(self.into()).into_iter()
    }
}

macro_rules! impl_for_tuple {
    ($t:ident) => (
        impl<'a, $t> MultiVerticesSource<'a> for ($t,)
            where $t: Into<VerticesSource<'a>>
        {
            type Iterator = IntoIter<VerticesSource<'a>>;

            #[inline]
            fn iter(self) -> IntoIter<VerticesSource<'a>> {
                Some(self.0.into()).into_iter()
            }
        }
    );

    ($t1:ident, $t2:ident) => (
        #[allow(non_snake_case)]
        impl<'a, $t1, $t2> MultiVerticesSource<'a> for ($t1, $t2)
            where $t1: Into<VerticesSource<'a>>, $t2: Into<VerticesSource<'a>>
        {
            type Iterator = Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                  <($t2,) as MultiVerticesSource<'a>>::Iterator>;

            #[inline]
            fn iter(self) -> Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                   <($t2,) as MultiVerticesSource<'a>>::Iterator>
            {
                let ($t1, $t2) = self;
                Some($t1.into()).into_iter().chain(($t2,).iter())
            }
        }

        impl_for_tuple!($t2);
    );

    ($t1:ident, $($t2:ident),+) => (
        #[allow(non_snake_case)]
        impl<'a, $t1, $($t2),+> MultiVerticesSource<'a> for ($t1, $($t2),+)
            where $t1: Into<VerticesSource<'a>>, $($t2: Into<VerticesSource<'a>>),+
        {
            type Iterator = Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                  <($($t2),+) as MultiVerticesSource<'a>>::Iterator>;

            #[inline]
            fn iter(self) -> Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator,
                                  <($($t2),+) as MultiVerticesSource<'a>>::Iterator>
            {
                let ($t1, $($t2),+) = self;
                Some($t1.into()).into_iter().chain(($($t2),+).iter())
            }
        }

        impl_for_tuple!($($t2),+);
    );
}

impl_for_tuple!(A, B, C, D, E, F, G);

/// Trait for structures that represent a vertex.
///
/// Instead of implementing this trait yourself, it is recommended to use the `implement_vertex!`
/// macro instead.
// TODO: this should be `unsafe`, but that would break the syntax extension
pub trait Vertex: Copy + Sized {
    /// Builds the `VertexFormat` representing the layout of this element.
    fn build_bindings() -> VertexFormat;

    /// Returns true if the backend supports this vertex format.
    fn is_supported<C: ?Sized>(caps: &C) -> bool where C: CapabilitiesSource {
        let format = Self::build_bindings();

        for &(_, _, ref ty, _) in format.iter() {
            if !ty.is_supported(caps) {
                return false;
            }
        }

        true
    }
}

/// Trait for types that can be used as vertex attributes.
pub unsafe trait Attribute: Sized {
    /// Get the type of data.
    fn get_type() -> AttributeType;

    /// Returns true if the backend supports this type of attribute.
    #[inline]
    fn is_supported<C: ?Sized>(caps: &C) -> bool where C: CapabilitiesSource {
        Self::get_type().is_supported(caps)
    }
}