1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
/*! Contains everything related to vertex sources. When you draw, you need to pass one or several sources of vertex attributes. This is done with the first parameter to the `draw` function. ## Vertex The main trait of this module is `Vertex`, which must be implemented on structs whose instances describe individual vertices. The trait is unsafe to implement, so you are encouraged to use the `implement_vertex!` macro instead: ``` # #[macro_use] # extern crate glium; # extern crate glutin; # fn main() { #[derive(Copy, Clone)] struct MyVertex { position: [f32; 3], texcoords: [f32; 2], } // you must pass the list of members to the macro implement_vertex!(MyVertex, position, texcoords); # } ``` ## Vertex buffer Once you have a struct that implements the `Vertex` trait, you can build an array of vertices and upload it to the video memory by creating a `VertexBuffer`. ```no_run # let display: glium::Display = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() }; # #[derive(Copy, Clone)] # struct MyVertex { # position: [f32; 3], # texcoords: [f32; 2], # } # impl glium::vertex::Vertex for MyVertex { # fn build_bindings() -> glium::vertex::VertexFormat { unimplemented!() } # } let data = &[ MyVertex { position: [0.0, 0.0, 0.4], texcoords: [0.0, 1.0] }, MyVertex { position: [12.0, 4.5, -1.8], texcoords: [1.0, 0.5] }, MyVertex { position: [-7.124, 0.1, 0.0], texcoords: [0.0, 0.4] }, ]; let vertex_buffer = glium::vertex::VertexBuffer::new(&display, data); ``` ## Drawing When you draw, you can pass either a single vertex source or a tuple of multiple sources. Each source can be: - A reference to a `VertexBuffer`. - A slice of a vertex buffer, by calling `vertex_buffer.slice(start .. end).unwrap()`. - A vertex buffer where each element corresponds to an instance, by calling `vertex_buffer.per_instance()`. - The same with a slice, by calling `vertex_buffer.slice(start .. end).unwrap().per_instance()`. - A marker indicating a number of vertex sources, with `glium::vertex::EmptyVertexAttributes`. - A marker indicating a number of instances, with `glium::vertex::EmptyInstanceAttributes`. ```no_run # use glium::Surface; # let display: glium::Display = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() }; # #[derive(Copy, Clone)] # struct MyVertex { position: [f32; 3], texcoords: [f32; 2], } # impl glium::vertex::Vertex for MyVertex { # fn build_bindings() -> glium::vertex::VertexFormat { unimplemented!() } # } # let program: glium::program::Program = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() }; # let indices = glium::index::NoIndices(glium::index::PrimitiveType::TrianglesList); # let uniforms = glium::uniforms::EmptyUniforms; # let vertex_buffer: glium::vertex::VertexBuffer<MyVertex> = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() }; # let vertex_buffer2: glium::vertex::VertexBuffer<MyVertex> = unsafe { ::std::mem::MaybeUninit::uninit().assume_init() }; # let mut frame = display.draw(); // drawing with a single vertex buffer frame.draw(&vertex_buffer, &indices, &program, &uniforms, &Default::default()).unwrap(); // drawing with two parallel vertex buffers frame.draw((&vertex_buffer, &vertex_buffer2), &indices, &program, &uniforms, &Default::default()).unwrap(); // drawing without a vertex source frame.draw(glium::vertex::EmptyVertexAttributes { len: 12 }, &indices, &program, &uniforms, &Default::default()).unwrap(); // drawing a slice of a vertex buffer frame.draw(vertex_buffer.slice(6 .. 24).unwrap(), &indices, &program, &uniforms, &Default::default()).unwrap(); // drawing slices of two vertex buffers frame.draw((vertex_buffer.slice(6 .. 24).unwrap(), vertex_buffer2.slice(128 .. 146).unwrap()), &indices, &program, &uniforms, &Default::default()).unwrap(); // treating `vertex_buffer2` as a source of attributes per-instance instead of per-vertex frame.draw((&vertex_buffer, vertex_buffer2.per_instance().unwrap()), &indices, &program, &uniforms, &Default::default()).unwrap(); // instancing without any per-instance attribute frame.draw((&vertex_buffer, glium::vertex::EmptyInstanceAttributes { len: 36 }), &indices, &program, &uniforms, &Default::default()).unwrap(); ``` Note that if you use `index::EmptyIndices` as indices the length of all vertex sources must be the same, or a `DrawError::VerticesSourcesLengthMismatch` will be produced. In all situation, the length of all per-instance sources must match, or `DrawError::InstancesCountMismatch` will be returned. # Transform feedback Transform feedback allows you to write in a buffer the list of primitives that are generated by the GPU. To use it, you must first create a `TransformFeedbackSession` with `TransformFeedbackSession::new()`. This function requires you to pass a buffer of the correct type and a program. Then you must pass the `&TransformFeedbackSession` to the draw parameters. The program you use when drawing must be the same as you the one you created the session with, or else you will get an error. */ use std::iter::Chain; use std::option::IntoIter; pub use self::buffer::{VertexBuffer, VertexBufferAny}; pub use self::buffer::VertexBufferSlice; pub use self::buffer::CreationError as BufferCreationError; pub use self::format::{AttributeType, VertexFormat}; pub use self::transform_feedback::{is_transform_feedback_supported, TransformFeedbackSession}; use buffer::BufferAnySlice; use CapabilitiesSource; mod buffer; mod format; mod transform_feedback; /// Describes the source to use for the vertices when drawing. #[derive(Clone)] pub enum VerticesSource<'a> { /// A buffer uploaded in the video memory. /// /// The second parameter is the number of vertices in the buffer. /// /// The third parameter tells whether or not this buffer is "per instance" (true) or /// "per vertex" (false). VertexBuffer(BufferAnySlice<'a>, &'a VertexFormat, bool), /// A marker indicating a "phantom list of attributes". Marker { /// Number of attributes. len: usize, /// Whether or not this buffer is "per instance" (true) or "per vertex" (false). per_instance: bool, }, } /// Marker that can be passed instead of a buffer to indicate an empty list of buffers. pub struct EmptyVertexAttributes { /// Number of phantom vertices. pub len: usize, } impl<'a> Into<VerticesSource<'a>> for EmptyVertexAttributes { #[inline] fn into(self) -> VerticesSource<'a> { VerticesSource::Marker { len: self.len, per_instance: false } } } /// Marker that can be passed instead of a buffer to indicate an empty list of buffers. pub struct EmptyInstanceAttributes { /// Number of phantom vertices. pub len: usize, } impl<'a> Into<VerticesSource<'a>> for EmptyInstanceAttributes { #[inline] fn into(self) -> VerticesSource<'a> { VerticesSource::Marker { len: self.len, per_instance: true } } } /// Marker that instructs glium that the buffer is to be used per instance. pub struct PerInstance<'a>(BufferAnySlice<'a>, &'a VertexFormat); impl<'a> Into<VerticesSource<'a>> for PerInstance<'a> { #[inline] fn into(self) -> VerticesSource<'a> { VerticesSource::VertexBuffer(self.0, self.1, true) } } /// Objects that describe multiple vertex sources. pub trait MultiVerticesSource<'a> { /// Iterator that enumerates each source. type Iterator: Iterator<Item = VerticesSource<'a>>; /// Iterates over the `VerticesSource`. fn iter(self) -> Self::Iterator; } impl<'a, T> MultiVerticesSource<'a> for T where T: Into<VerticesSource<'a>> { type Iterator = IntoIter<VerticesSource<'a>>; #[inline] fn iter(self) -> IntoIter<VerticesSource<'a>> { Some(self.into()).into_iter() } } macro_rules! impl_for_tuple { ($t:ident) => ( impl<'a, $t> MultiVerticesSource<'a> for ($t,) where $t: Into<VerticesSource<'a>> { type Iterator = IntoIter<VerticesSource<'a>>; #[inline] fn iter(self) -> IntoIter<VerticesSource<'a>> { Some(self.0.into()).into_iter() } } ); ($t1:ident, $t2:ident) => ( #[allow(non_snake_case)] impl<'a, $t1, $t2> MultiVerticesSource<'a> for ($t1, $t2) where $t1: Into<VerticesSource<'a>>, $t2: Into<VerticesSource<'a>> { type Iterator = Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator, <($t2,) as MultiVerticesSource<'a>>::Iterator>; #[inline] fn iter(self) -> Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator, <($t2,) as MultiVerticesSource<'a>>::Iterator> { let ($t1, $t2) = self; Some($t1.into()).into_iter().chain(($t2,).iter()) } } impl_for_tuple!($t2); ); ($t1:ident, $($t2:ident),+) => ( #[allow(non_snake_case)] impl<'a, $t1, $($t2),+> MultiVerticesSource<'a> for ($t1, $($t2),+) where $t1: Into<VerticesSource<'a>>, $($t2: Into<VerticesSource<'a>>),+ { type Iterator = Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator, <($($t2),+) as MultiVerticesSource<'a>>::Iterator>; #[inline] fn iter(self) -> Chain<<($t1,) as MultiVerticesSource<'a>>::Iterator, <($($t2),+) as MultiVerticesSource<'a>>::Iterator> { let ($t1, $($t2),+) = self; Some($t1.into()).into_iter().chain(($($t2),+).iter()) } } impl_for_tuple!($($t2),+); ); } impl_for_tuple!(A, B, C, D, E, F, G); /// Trait for structures that represent a vertex. /// /// Instead of implementing this trait yourself, it is recommended to use the `implement_vertex!` /// macro instead. // TODO: this should be `unsafe`, but that would break the syntax extension pub trait Vertex: Copy + Sized { /// Builds the `VertexFormat` representing the layout of this element. fn build_bindings() -> VertexFormat; /// Returns true if the backend supports this vertex format. fn is_supported<C: ?Sized>(caps: &C) -> bool where C: CapabilitiesSource { let format = Self::build_bindings(); for &(_, _, ref ty, _) in format.iter() { if !ty.is_supported(caps) { return false; } } true } } /// Trait for types that can be used as vertex attributes. pub unsafe trait Attribute: Sized { /// Get the type of data. fn get_type() -> AttributeType; /// Returns true if the backend supports this type of attribute. #[inline] fn is_supported<C: ?Sized>(caps: &C) -> bool where C: CapabilitiesSource { Self::get_type().is_supported(caps) } }