Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
//! A piston backend for rendering conrod primitives.

use conrod_core::{
    Rect,
    image,
    render,
    text,
    utils,
};
use piston_graphics;

#[doc(inline)]
pub use piston_graphics::{Context, DrawState, Graphics, ImageSize, Transformed};


/// Render the given sequence of conrod primitive widgets.
///
/// Params:
///
/// - `primitives` - The sequence of primitives to be rendered to the screen.
/// - `context` - The piston2d-graphics drawing context.
/// - `graphics` - The piston `Graphics` backend.
/// - `text_texture_cache` - Some texture type `T` upon which we can cache text glyphs.
/// - `glyph_cache` - The RustType `Cache` used to cache glyphs in our `text_texture_cache`.
/// - `image_map` - Mappings from image widget indices to their associated image data.
/// - `cache_queue_glyphs` - A function for caching glyphs within the given texture cache.
/// - `texture_from_image` - A function that borrows a drawable texture `T` from an `Img`. In many
///   cases, `Img` may be the same type as `T`, however we provide this to allow for flexibility.
pub fn primitives<'a, P, G, T, Img, C, F>(
    mut primitives: P,
    context: Context,
    graphics: &'a mut G,
    text_texture_cache: &'a mut T,
    glyph_cache: &'a mut text::GlyphCache,
    image_map: &'a image::Map<Img>,
    mut cache_queued_glyphs: C,
    mut texture_from_image: F,
)
    where P: render::PrimitiveWalker,
          G: Graphics<Texture=T>,
          T: ImageSize,
          C: FnMut(&mut G, &mut T, text::rt::Rect<u32>, &[u8]),
          F: FnMut(&Img) -> &T,
{

    // A re-usable buffer of rectangles describing the glyph's screen and texture positions.
    let mut glyph_rectangles = Vec::new();

    while let Some(prim) = render::PrimitiveWalker::next_primitive(&mut primitives) {
        primitive(prim,
                  context,
                  graphics,
                  text_texture_cache,
                  glyph_cache,
                  image_map,
                  &mut glyph_rectangles,
                  &mut cache_queued_glyphs,
                  &mut texture_from_image);
    }
}


/// Render a single `Primitive`.
///
/// Params:
///
/// - `primitive` - The `Primitive` that is to be rendered to the screen.
/// - `context` - The piston2d-graphics drawing context.
/// - `graphics` - The piston `Graphics` backend.
/// - `text_texture_cache` - Some texture type `T` upon which we can cache text glyphs.
/// - `glyph_cache` - The RustType `Cache` used to cache glyphs in our `text_texture_cache`.
/// - `image_map` - Mappings from image widget indices to their associated image data.
/// - `glyph_rectangles` - A re-usable buffer for collecting positioning rectangles for glyphs.
/// - `cache_queue_glyphs` - A function for caching glyphs within the given texture cache.
/// - `texture_from_image` - A function that borrows a drawable texture `T` from an `Img`. In many
///   cases, `Img` may be the same type as `T`, however we provide this to allow for flexibility.
pub fn primitive<'a, Img, G, T, C, F>(
    primitive: render::Primitive,
    context: Context,
    graphics: &'a mut G,
    text_texture_cache: &'a mut T,
    glyph_cache: &'a mut text::GlyphCache,
    image_map: &'a image::Map<Img>,
    glyph_rectangles: &mut Vec<([f64; 4], [f64; 4])>,
    mut cache_queued_glyphs: C,
    mut texture_from_image: F,
)
    where G: Graphics<Texture=T>,
          T: ImageSize,
          C: FnMut(&mut G, &mut T, text::rt::Rect<u32>, &[u8]),
          F: FnMut(&Img) -> &T,
{
    let render::Primitive { kind, scizzor, rect, .. } = primitive;
    let view_size = context.get_view_size();
    // Translate the `context` to suit conrod's orientation (middle (0, 0), y pointing upwards).
    let context = context.trans(view_size[0] / 2.0, view_size[1] / 2.0).scale(1.0, -1.0);
    let context = crop_context(context, scizzor);

    match kind {

        render::PrimitiveKind::Rectangle { color } => {
            let (l, b, w, h) = rect.l_b_w_h();
            let lbwh = [l, b, w, h];
            let rectangle = piston_graphics::Rectangle::new(color.to_fsa());
            rectangle.draw(lbwh, &context.draw_state, context.transform, graphics);
        },

        // FIXME: This could be greatly optimised using the `Graphics::tri_list` method.
        render::PrimitiveKind::TrianglesSingleColor { color, triangles } => {
            for triangle in triangles {
                let polygon = piston_graphics::Polygon::new(color.into());
                polygon.draw(&triangle[..], &context.draw_state, context.transform, graphics);
            }
        },

        // FIXME: Piston does not currently allow for associating a unique colour per vertex.  For
        // now, we just use the first colour of each triangle. Also, this could be greatly
        // optimised using one of the `tri_list` methods, however currently they expect a single
        // color.
        render::PrimitiveKind::TrianglesMultiColor { triangles } => {
            for triangle in triangles {
                let color = triangle[0].1.into();
                let polygon = piston_graphics::Polygon::new(color);
                let points = [triangle[0].0, triangle[1].0, triangle[2].0];
                polygon.draw(&points, &context.draw_state, context.transform, graphics);
            }
        },

        render::PrimitiveKind::Text { color, text, font_id } => {

            // Retrieve the "dots per inch" factor by dividing the draw width by the window width.
            //
            // TODO: Perhaps this should be a method on the `Context` type?
            let dpi_factor = context.viewport
                .map(|v| v.draw_size[0] as f32 / v.window_size[0] as f32)
                .unwrap_or(1.0);
            let positioned_glyphs = text.positioned_glyphs(dpi_factor);
            // Re-orient the context to top-left origin with *y* facing downwards, as the
            // `positioned_glyphs` yield pixel positioning.
            let context = context.scale(1.0, -1.0).trans(-view_size[0] / 2.0, -view_size[1] / 2.0);

            // Queue the glyphs to be cached.
            for glyph in positioned_glyphs.iter() {
                glyph_cache.queue_glyph(font_id.index(), glyph.clone());
            }

            // Cache the glyphs within the GPU cache.
            glyph_cache.cache_queued(|rect, data| {
                cache_queued_glyphs(graphics, text_texture_cache, rect, data)
            }).unwrap();

            let cache_id = font_id.index();
            let (tex_w, tex_h) = text_texture_cache.get_size();
            let color = color.to_fsa();

            let rectangles = positioned_glyphs.into_iter()
                .filter_map(|g| glyph_cache.rect_for(cache_id, g).ok().unwrap_or(None))
                .map(|(uv_rect, screen_rect)| {
                    let rectangle = {
                        let div_dpi_factor = |s| (s as f32 / dpi_factor as f32) as f64;
                        let left = div_dpi_factor(screen_rect.min.x);
                        let top = div_dpi_factor(screen_rect.min.y);
                        let right = div_dpi_factor(screen_rect.max.x);
                        let bottom = div_dpi_factor(screen_rect.max.y);
                        let w = right - left;
                        let h = bottom - top;
                        [left, top, w, h]
                    };
                    let source_rectangle = {
                        let x = (uv_rect.min.x * tex_w as f32) as f64;
                        let y = (uv_rect.min.y * tex_h as f32) as f64;
                        let w = ((uv_rect.max.x - uv_rect.min.x) * tex_w as f32) as f64;
                        let h = ((uv_rect.max.y - uv_rect.min.y) * tex_h as f32) as f64;
                        [x, y, w, h]
                    };
                    (rectangle, source_rectangle)
                });
            glyph_rectangles.clear();
            glyph_rectangles.extend(rectangles);
            piston_graphics::image::draw_many(&glyph_rectangles,
                                              color,
                                              text_texture_cache,
                                              &context.draw_state,
                                              context.transform,
                                              graphics);
        },

        render::PrimitiveKind::Image { image_id, color, source_rect } => {
            if let Some(img) = image_map.get(&image_id) {
                let mut image = piston_graphics::image::Image::new();
                image.color = color.map(|c| c.to_fsa());
                if let Some(source_rect) = source_rect {
                    let (x, y, w, h) = source_rect.x_y_w_h();
                    image.source_rectangle = Some([x, y, w, h]);
                }
                let (left, top, w, h) = rect.l_t_w_h();
                image.rectangle = Some([0.0, 0.0, w, h]);
                let context = context.trans(left, top).scale(1.0, -1.0);
                let transform = context.transform;
                let draw_state = &context.draw_state;
                let tex = texture_from_image(img);
                image.draw(tex, draw_state, transform, graphics);
            }
        },

        render::PrimitiveKind::Other(_widget) => {
            // TODO: Perhaps add a function to the `primitives` params to allow a user to
            // handle these.
        },

    }
 

}



/// Crop the given **Context** to the given **Rect**.
///
/// This is non-trivial as we must consider the view_size, viewport, the difference in
/// co-ordinate systems and the conversion from `f64` dimensions to `u16`.
fn crop_context(context: Context, rect: Rect) -> Context {
    use self::utils::map_range;
    let Context { draw_state, .. } = context;

    let (x, y, w, h) = rect.x_y_w_h();

    // Our view_dim is our virtual window size which is consistent no matter the display.
    let view_dim = context.get_view_size();

    // Our draw_dim is the actual window size in pixels. Our target crop area must be
    // represented in this size.
    let draw_dim = match context.viewport {
        Some(viewport) => [viewport.draw_size[0] as f64, viewport.draw_size[1] as f64],
        None => view_dim,
    };

    // Calculate the distance to the edges of the window from the center.
    let left = -view_dim[0] / 2.0;
    let right = view_dim[0] / 2.0;
    let bottom = -view_dim[1] / 2.0;
    let top = view_dim[1] / 2.0;

    // We start with the x and y in the center of our crop area, however we need it to be
    // at the top left of the crop area.
    let left_x = x - w as f64 / 2.0;
    let top_y = y + h as f64 / 2.0;

    // Map the position at the top left of the crop area in view_dim to our draw_dim.
    let x = map_range(left_x, left, right, 0, draw_dim[0] as i32);
    let y = map_range(top_y, top, bottom, 0, draw_dim[1] as i32);

    // Convert the w and h from our view_dim to the draw_dim.
    let w_scale = draw_dim[0] / view_dim[0];
    let h_scale = draw_dim[1] / view_dim[1];
    let w = w * w_scale;
    let h = h * h_scale;

    // If we ended up with negative coords for the crop area, we'll use 0 instead as we
    // can't represent the negative coords with `u32` (the target DrawState dimension type).
    // We'll hold onto the lost negative values (x_neg and y_neg) so that we can compensate
    // with the width and height.
    let x_neg = if x < 0 { x } else { 0 };
    let y_neg = if y < 0 { y } else { 0 };
    let mut x = ::std::cmp::max(0, x) as u32;
    let mut y = ::std::cmp::max(0, y) as u32;
    let mut w = ::std::cmp::max(0, w as i32 + x_neg) as u32;
    let mut h = ::std::cmp::max(0, h as i32 + y_neg) as u32;

    // If there was already some scissor set, we must check for the intersection.
    if let Some(rect) = draw_state.scissor {
        let (r_x, r_y, r_w, r_h) = (rect[0], rect[1], rect[2], rect[3]);
        if x + w < r_x || r_x + r_w < x || y + h < r_y || r_y + r_h < y {
            // If there is no intersection, we have no scissor.
            w = 0;
            h = 0;
        } else {
            // If there is some intersection, calculate the overlapping rect.
            let (a_l, a_r, a_b, a_t) = (x, x+w, y, y+h);
            let (b_l, b_r, b_b, b_t) = (r_x, r_x+r_w, r_y, r_y+r_h);
            let l = if a_l > b_l { a_l } else { b_l };
            let r = if a_r < b_r { a_r } else { b_r };
            let b = if a_b > b_b { a_b } else { b_b };
            let t = if a_t < b_t { a_t } else { b_t };
            x = l;
            y = b;
            w = r - l;
            h = t - b;
        }
    }

    Context { draw_state: draw_state.scissor([x, y, w, h]), ..context }
}