Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
use fallback;

// We only use AVX when we can detect at runtime whether it's available, which
// requires std.
#[cfg(feature = "std")]
mod avx;
mod sse2;

// This macro employs a gcc-like "ifunc" trick where by upon first calling
// `memchr` (for example), CPU feature detection will be performed at runtime
// to determine the best implementation to use. After CPU feature detection
// is done, we replace `memchr`'s function pointer with the selection. Upon
// subsequent invocations, the CPU-specific routine is invoked directly, which
// skips the CPU feature detection and subsequent branch that's required.
//
// While this typically doesn't matter for rare occurrences or when used on
// larger haystacks, `memchr` can be called in tight loops where the overhead
// of this branch can actually add up *and is measurable*. This trick was
// necessary to bring this implementation up to glibc's speeds for the 'tiny'
// benchmarks, for example.
//
// At some point, I expect the Rust ecosystem will get a nice macro for doing
// exactly this, at which point, we can replace our hand-jammed version of it.
//
// N.B. The ifunc strategy does prevent function inlining of course, but on
// modern CPUs, you'll probably end up with the AVX2 implementation, which
// probably can't be inlined anyway---unless you've compiled your entire
// program with AVX2 enabled. However, even then, the various memchr
// implementations aren't exactly small, so inlining might not help anyway!
#[cfg(feature = "std")]
macro_rules! ifunc {
    ($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
        use std::mem;
        use std::sync::atomic::{AtomicPtr, Ordering};

        type FnRaw = *mut ();

        static FN: AtomicPtr<()> = AtomicPtr::new(detect as FnRaw);

        fn detect($($needle: u8),+, haystack: &[u8]) -> Option<usize> {
            let fun =
                if cfg!(memchr_runtime_avx) && is_x86_feature_detected!("avx2") {
                    avx::$name as FnRaw
                } else if cfg!(memchr_runtime_sse2) {
                    sse2::$name as FnRaw
                } else {
                    fallback::$name as FnRaw
                };
            FN.store(fun as FnRaw, Ordering::Relaxed);
            unsafe {
                mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, haystack)
            }
        }

        unsafe {
            let fun = FN.load(Ordering::Relaxed);
            mem::transmute::<FnRaw, $fnty>(fun)($($needle),+, $haystack)
        }
    }}
}

// When std isn't available to provide runtime CPU feature detection, or if
// runtime CPU feature detection has been explicitly disabled, then just call
// our optimized SSE2 routine directly. SSE2 is avalbale on all x86_64 targets,
// so no CPU feature detection is necessary.
#[cfg(not(feature = "std"))]
macro_rules! ifunc {
    ($fnty:ty, $name:ident, $haystack:ident, $($needle:ident),+) => {{
        if cfg!(memchr_runtime_sse2) {
            unsafe { sse2::$name($($needle),+, $haystack) }
        } else {
            fallback::$name($($needle),+, $haystack)
        }
    }}
}

#[inline(always)]
pub fn memchr(n1: u8, haystack: &[u8]) -> Option<usize> {
    ifunc!(fn(u8, &[u8]) -> Option<usize>, memchr, haystack, n1)
}

#[inline(always)]
pub fn memchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
    ifunc!(fn(u8, u8, &[u8]) -> Option<usize>, memchr2, haystack, n1, n2)
}

#[inline(always)]
pub fn memchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
    ifunc!(
        fn(u8, u8, u8, &[u8]) -> Option<usize>,
        memchr3,
        haystack,
        n1,
        n2,
        n3
    )
}

#[inline(always)]
pub fn memrchr(n1: u8, haystack: &[u8]) -> Option<usize> {
    ifunc!(fn(u8, &[u8]) -> Option<usize>, memrchr, haystack, n1)
}

#[inline(always)]
pub fn memrchr2(n1: u8, n2: u8, haystack: &[u8]) -> Option<usize> {
    ifunc!(fn(u8, u8, &[u8]) -> Option<usize>, memrchr2, haystack, n1, n2)
}

#[inline(always)]
pub fn memrchr3(n1: u8, n2: u8, n3: u8, haystack: &[u8]) -> Option<usize> {
    ifunc!(
        fn(u8, u8, u8, &[u8]) -> Option<usize>,
        memrchr3,
        haystack,
        n1,
        n2,
        n3
    )
}