Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
//! Client-side Wayland connector
//!
//! ## Overview
//!
//! This crate provides the interfaces and machinery to safely create
//! client applications for the Wayland protocol. It is a rust wrapper
//! around the `libwayland-client.so` C library.
//!
//! The Wayland protocol revolves around the creation of various objects
//! and the exchange of messages associated to these objects. The initial
//! object is always the `Display`, that you get at initialization of the
//! connection, exposed by this crate as `Display::connect_to_env()`.
//!
//! ## Protocol and messages handling model
//!
//! The protocol being bi-directional, you can send and receive messages.
//! Sending messages is done via methods of Rust objects corresponding to the wayland protocol
//! objects, receiving and handling them is done by providing implementations.
//!
//! ### Proxies
//!
//! The underlying representation of Wayland protocol objects in this crate is `Proxy<I>`,
//! where `I` is the type of the considered Rust object. An object's interface (think "class"
//! in an object-oriented context) defines which messages it can send and receive.
//!
//! These proxies are used to send messages to the server (in the Wayland context,
//! these are called "requests"). You usually don't use them directly, and instead call
//! methods on the Rust objects themselves, which invoke the appropriate `Proxy` methods.
//! It is also possible to directly use the `Proxy::<I>::send(..)` method, but
//! this should only be done carefully: using it improperly can mess the protocol
//! state and cause protocol errors, which are fatal to the connection (the server
//! will kill you).
//!
//! There is not a 1 to 1 mapping between Rust object instances and protocol
//! objects. Rather, you can think of the Rust objects as `Rc`-like handles to a
//! Wayland object. Multiple instances of a Rust object can exist referring to the same
//! protocol object.
//!
//! Similarly, the lifetimes of the protocol objects and the Rust objects are
//! not tightly tied. As protocol objects are created and destroyed by protocol
//! messages, it can happen that an object gets destroyed while one or more
//! Rust objects still refer to it. In such case, these Rust objects will be disabled
//! and the `alive()` method on the underlying `Proxy<I>` will start to return `false`.
//! Trying to send messages with them will also fail.
//!
//! ### Implementations
//!
//! To receive and process messages from the server to you (in Wayland context they are
//! called "events"), you need to provide an `Implementation` for each Wayland object
//! created in the protocol session. Whenever a new protocol object is created, you will
//! receive a `NewProxy<I>` object. Providing an implementation via its `implement()` method
//! will turn it into a regular Rust object.
//!
//! **All objects must be implemented**, even if it is an implementation doing nothing.
//! Failure to do so (by dropping the `NewProxy<I>` for example) can cause future fatal
//! errors if the server tries to send an event to this object.
//!
//! An implementation is a struct implementing the `EventHandler` trait for the interface
//! of the considered object. Alternatively, an `FnMut(I::Event, I)` closure can be
//! used with the `implement_closure()` method, where `I` is the interface
//! of the considered object.
//!
//! ## Event Queues
//!
//! The Wayland client machinery provides the possibility to have one or more event queues
//! handling the processing of received messages. All Wayland objects are associated to an
//! event queue, which controls when its events are dispatched.
//!
//! Events received from the server are stored in an internal buffer, and processed (by calling
//! the appropriate implementations) when the associated event queue is dispatched.
//!
//! A default event queue is created at the same time as the initial `Display`, and by default
//! whenever a Wayland object is created, it inherits the queue of its parent (the object that sent
//! or receive the message that created the new object). It means that if you only plan to use the
//! default event queue, you don't need to worry about assigning objects to their queues.
//!
//! See the documentation of `EventQueue` for details about dispatching and integrating the event
//! queue into the event loop of your application. See the `Proxy::make_wrapper()` method for
//! details about assigning objects to event queues.
//!
//! ## Dynamic linking with `libwayland-client.so`
//!
//! If you need to gracefully handle the case of a system on which Wayland is not installed (by
//! fallbacking to X11 for example), you can do so by activating the `dlopen` cargo feature.
//!
//! When this is done, the library will be loaded a runtime rather than directly linked. And trying
//! to create a `Display` on a system that does not have this library will return a `NoWaylandLib`
//! error.
//!
//! ## Auxiliary libraries
//!
//! Two auxiliary libraries are also available behind cargo features:
//!
//! - the `cursor` feature will try to load `libwayland-cursor.so`, a library helping with loading
//!   system themed cursor textures, to integrate your app in the system theme.
//! - the `egl` feature will try to load `libwayland-egl.so`, a library allowing the creation of
//!   OpenGL surface from Wayland surfaces.
//!
//! Both of them will also be loaded at runtime if the `dlopen` feature was provided. See their
//! respective submodules for details about their use.
//!
//! ### Event Loop integration
//!
//! The `eventloop` cargo feature adds the necessary implementations to use an `EventQueue`
//! as a `calloop` event source. If you want to use it, here are a few points to take into
//! account:
//!
//! - The `EventQueue` will not call its associated callback, but rather manage all the
//!   event dispatching internally. As a result, there is no point registering it to
//!   `calloop` with anything other than a dummy callback.
//! - You still need to call `Display::flush()` yourself between `calloop`s dispatches,
//!   or in the `EventLoop::run()` callback of `calloop`.

#![warn(missing_docs)]

#[macro_use]
extern crate bitflags;
#[cfg(not(feature = "native_lib"))]
#[macro_use]
extern crate downcast_rs as downcast;
extern crate libc;
extern crate nix;

#[cfg(feature = "eventloop")]
extern crate calloop;
#[cfg(feature = "eventloop")]
extern crate mio;

extern crate wayland_commons;
#[cfg_attr(feature = "native_lib", macro_use)]
extern crate wayland_sys;

mod display;
mod event_queue;
mod globals;
mod proxy;

pub use display::{ConnectError, Display, ProtocolError};
pub use event_queue::{EventQueue, QueueToken, ReadEventsGuard};
pub use globals::{GlobalError, GlobalEvent, GlobalImplementor, GlobalManager};
pub use imp::ProxyMap;
pub use proxy::{HandledBy, NewProxy, Proxy};

#[cfg(feature = "cursor")]
pub mod cursor;

#[cfg(feature = "egl")]
pub mod egl;

pub mod sinks;

pub use anonymous_object::AnonymousObject;
pub use wayland_commons::{Interface, MessageGroup, NoMessage};

// rust implementation
#[cfg(not(feature = "native_lib"))]
#[path = "rust_imp/mod.rs"]
mod imp;
// C-lib based implementation
#[cfg(feature = "native_lib")]
#[path = "native_lib/mod.rs"]
mod imp;

/// C-associated types
///
/// Required for plugging wayland-scanner generated protocols
/// or interfacing with C code using wayland objects.
pub mod sys {
    pub use wayland_sys::{client, common};
}

pub mod protocol {
    #![allow(dead_code, non_camel_case_types, unused_unsafe, unused_variables)]
    #![allow(non_upper_case_globals, non_snake_case, unused_imports)]
    #![allow(missing_docs)]
    #![cfg_attr(feature = "cargo-clippy", allow(clippy))]

    pub(crate) use wayland_commons::map::{Object, ObjectMetadata};
    pub(crate) use wayland_commons::wire::{Argument, ArgumentType, Message, MessageDesc};
    pub(crate) use wayland_commons::{Interface, MessageGroup};
    pub(crate) use wayland_sys as sys;
    pub(crate) use {AnonymousObject, HandledBy, NewProxy, Proxy, ProxyMap};
    include!(concat!(env!("OUT_DIR"), "/wayland_api.rs"));
}

mod anonymous_object {
    use super::{Interface, NoMessage, Proxy};

    /// Anonymous interface
    ///
    /// A special Interface implementation representing an
    /// handle to an object for which the interface is not known.
    #[derive(Clone, Eq, PartialEq)]
    pub struct AnonymousObject(Proxy<AnonymousObject>);

    impl Interface for AnonymousObject {
        type Request = NoMessage;
        type Event = NoMessage;
        const NAME: &'static str = "<anonymous>";
        const VERSION: u32 = 0;
        fn c_interface() -> *const ::sys::common::wl_interface {
            ::std::ptr::null()
        }
    }

    impl AsRef<Proxy<AnonymousObject>> for AnonymousObject {
        #[inline]
        fn as_ref(&self) -> &Proxy<Self> {
            &self.0
        }
    }
    impl From<Proxy<AnonymousObject>> for AnonymousObject {
        #[inline]
        fn from(proxy: Proxy<Self>) -> Self {
            AnonymousObject(proxy)
        }
    }
    impl From<AnonymousObject> for Proxy<AnonymousObject> {
        #[inline]
        fn from(value: AnonymousObject) -> Self {
            value.0
        }
    }
}

#[cfg(feature = "eventloop")]
impl ::mio::event::Evented for EventQueue {
    fn register(
        &self,
        poll: &::mio::Poll,
        token: ::mio::Token,
        interest: ::mio::Ready,
        opts: ::mio::PollOpt,
    ) -> ::std::io::Result<()> {
        let fd = self.inner.get_connection_fd();
        ::mio::unix::EventedFd(&fd).register(poll, token, interest, opts)
    }

    fn reregister(
        &self,
        poll: &::mio::Poll,
        token: ::mio::Token,
        interest: ::mio::Ready,
        opts: ::mio::PollOpt,
    ) -> ::std::io::Result<()> {
        let fd = self.inner.get_connection_fd();
        ::mio::unix::EventedFd(&fd).reregister(poll, token, interest, opts)
    }

    fn deregister(&self, poll: &::mio::Poll) -> ::std::io::Result<()> {
        let fd = self.inner.get_connection_fd();
        ::mio::unix::EventedFd(&fd).deregister(poll)
    }
}

#[cfg(feature = "eventloop")]
impl ::calloop::EventSource for EventQueue {
    type Event = ();

    fn interest(&self) -> ::mio::Ready {
        ::mio::Ready::readable()
    }

    fn pollopts(&self) -> ::mio::PollOpt {
        ::mio::PollOpt::edge()
    }

    fn make_dispatcher<Data: 'static, F: FnMut((), &mut Data) + 'static>(
        &self,
        _callback: F,
    ) -> ::std::rc::Rc<::std::cell::RefCell<::calloop::EventDispatcher<Data>>> {
        struct Dispatcher {
            inner: ::std::rc::Rc<::imp::EventQueueInner>,
        }

        impl<Data> ::calloop::EventDispatcher<Data> for Dispatcher {
            fn ready(&mut self, _ready: ::mio::Ready, _data: &mut Data) {
                if let Err(()) = self.inner.prepare_read() {
                    self.inner.dispatch_pending().unwrap();
                } else {
                    match self.inner.read_events() {
                        Ok(_) => {
                            self.inner.dispatch_pending().unwrap();
                        }
                        Err(e) => match e.kind() {
                            ::std::io::ErrorKind::WouldBlock => {}
                            _ => {
                                panic!("Failed to read from wayland socket: {}", e);
                            }
                        },
                    }
                }
            }
        }

        ::std::rc::Rc::new(::std::cell::RefCell::new(Dispatcher {
            inner: self.inner.clone(),
        }))
    }
}