Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The binomial distribution.
#![allow(deprecated)]
#![allow(clippy::all)]

use crate::distributions::{Distribution, Uniform};
use crate::Rng;

/// The binomial distribution `Binomial(n, p)`.
///
/// This distribution has density function:
/// `f(k) = n!/(k! (n-k)!) p^k (1-p)^(n-k)` for `k >= 0`.
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Binomial {
    /// Number of trials.
    n: u64,
    /// Probability of success.
    p: f64,
}

impl Binomial {
    /// Construct a new `Binomial` with the given shape parameters `n` (number
    /// of trials) and `p` (probability of success).
    ///
    /// Panics if `p < 0` or `p > 1`.
    pub fn new(n: u64, p: f64) -> Binomial {
        assert!(p >= 0.0, "Binomial::new called with p < 0");
        assert!(p <= 1.0, "Binomial::new called with p > 1");
        Binomial { n, p }
    }
}

/// Convert a `f64` to an `i64`, panicing on overflow.
// In the future (Rust 1.34), this might be replaced with `TryFrom`.
fn f64_to_i64(x: f64) -> i64 {
    assert!(x < (::std::i64::MAX as f64));
    x as i64
}

impl Distribution<u64> for Binomial {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
        // Handle these values directly.
        if self.p == 0.0 {
            return 0;
        } else if self.p == 1.0 {
            return self.n;
        }

        // The binomial distribution is symmetrical with respect to p -> 1-p,
        // k -> n-k switch p so that it is less than 0.5 - this allows for lower
        // expected values we will just invert the result at the end
        let p = if self.p <= 0.5 { self.p } else { 1.0 - self.p };

        let result;
        let q = 1. - p;

        // For small n * min(p, 1 - p), the BINV algorithm based on the inverse
        // transformation of the binomial distribution is efficient. Otherwise,
        // the BTPE algorithm is used.
        //
        // Voratas Kachitvichyanukul and Bruce W. Schmeiser. 1988. Binomial
        // random variate generation. Commun. ACM 31, 2 (February 1988),
        // 216-222. http://dx.doi.org/10.1145/42372.42381

        // Threshold for prefering the BINV algorithm. The paper suggests 10,
        // Ranlib uses 30, and GSL uses 14.
        const BINV_THRESHOLD: f64 = 10.;

        if (self.n as f64) * p < BINV_THRESHOLD && self.n <= (::std::i32::MAX as u64) {
            // Use the BINV algorithm.
            let s = p / q;
            let a = ((self.n + 1) as f64) * s;
            let mut r = q.powi(self.n as i32);
            let mut u: f64 = rng.gen();
            let mut x = 0;
            while u > r as f64 {
                u -= r;
                x += 1;
                r *= a / (x as f64) - s;
            }
            result = x;
        } else {
            // Use the BTPE algorithm.

            // Threshold for using the squeeze algorithm. This can be freely
            // chosen based on performance. Ranlib and GSL use 20.
            const SQUEEZE_THRESHOLD: i64 = 20;

            // Step 0: Calculate constants as functions of `n` and `p`.
            let n = self.n as f64;
            let np = n * p;
            let npq = np * q;
            let f_m = np + p;
            let m = f64_to_i64(f_m);
            // radius of triangle region, since height=1 also area of region
            let p1 = (2.195 * npq.sqrt() - 4.6 * q).floor() + 0.5;
            // tip of triangle
            let x_m = (m as f64) + 0.5;
            // left edge of triangle
            let x_l = x_m - p1;
            // right edge of triangle
            let x_r = x_m + p1;
            let c = 0.134 + 20.5 / (15.3 + (m as f64));
            // p1 + area of parallelogram region
            let p2 = p1 * (1. + 2. * c);

            fn lambda(a: f64) -> f64 {
                a * (1. + 0.5 * a)
            }

            let lambda_l = lambda((f_m - x_l) / (f_m - x_l * p));
            let lambda_r = lambda((x_r - f_m) / (x_r * q));
            // p1 + area of left tail
            let p3 = p2 + c / lambda_l;
            // p1 + area of right tail
            let p4 = p3 + c / lambda_r;

            // return value
            let mut y: i64;

            let gen_u = Uniform::new(0., p4);
            let gen_v = Uniform::new(0., 1.);

            loop {
                // Step 1: Generate `u` for selecting the region. If region 1 is
                // selected, generate a triangularly distributed variate.
                let u = gen_u.sample(rng);
                let mut v = gen_v.sample(rng);
                if !(u > p1) {
                    y = f64_to_i64(x_m - p1 * v + u);
                    break;
                }

                if !(u > p2) {
                    // Step 2: Region 2, parallelograms. Check if region 2 is
                    // used. If so, generate `y`.
                    let x = x_l + (u - p1) / c;
                    v = v * c + 1.0 - (x - x_m).abs() / p1;
                    if v > 1. {
                        continue;
                    } else {
                        y = f64_to_i64(x);
                    }
                } else if !(u > p3) {
                    // Step 3: Region 3, left exponential tail.
                    y = f64_to_i64(x_l + v.ln() / lambda_l);
                    if y < 0 {
                        continue;
                    } else {
                        v *= (u - p2) * lambda_l;
                    }
                } else {
                    // Step 4: Region 4, right exponential tail.
                    y = f64_to_i64(x_r - v.ln() / lambda_r);
                    if y > 0 && (y as u64) > self.n {
                        continue;
                    } else {
                        v *= (u - p3) * lambda_r;
                    }
                }

                // Step 5: Acceptance/rejection comparison.

                // Step 5.0: Test for appropriate method of evaluating f(y).
                let k = (y - m).abs();
                if !(k > SQUEEZE_THRESHOLD && (k as f64) < 0.5 * npq - 1.) {
                    // Step 5.1: Evaluate f(y) via the recursive relationship. Start the
                    // search from the mode.
                    let s = p / q;
                    let a = s * (n + 1.);
                    let mut f = 1.0;
                    if m < y {
                        let mut i = m;
                        loop {
                            i += 1;
                            f *= a / (i as f64) - s;
                            if i == y {
                                break;
                            }
                        }
                    } else if m > y {
                        let mut i = y;
                        loop {
                            i += 1;
                            f /= a / (i as f64) - s;
                            if i == m {
                                break;
                            }
                        }
                    }
                    if v > f {
                        continue;
                    } else {
                        break;
                    }
                }

                // Step 5.2: Squeezing. Check the value of ln(v) againts upper and
                // lower bound of ln(f(y)).
                let k = k as f64;
                let rho = (k / npq) * ((k * (k / 3. + 0.625) + 1. / 6.) / npq + 0.5);
                let t = -0.5 * k * k / npq;
                let alpha = v.ln();
                if alpha < t - rho {
                    break;
                }
                if alpha > t + rho {
                    continue;
                }

                // Step 5.3: Final acceptance/rejection test.
                let x1 = (y + 1) as f64;
                let f1 = (m + 1) as f64;
                let z = (f64_to_i64(n) + 1 - m) as f64;
                let w = (f64_to_i64(n) - y + 1) as f64;

                fn stirling(a: f64) -> f64 {
                    let a2 = a * a;
                    (13860. - (462. - (132. - (99. - 140. / a2) / a2) / a2) / a2) / a / 166320.
                }

                if alpha
                        > x_m * (f1 / x1).ln()
                        + (n - (m as f64) + 0.5) * (z / w).ln()
                        + ((y - m) as f64) * (w * p / (x1 * q)).ln()
                        // We use the signs from the GSL implementation, which are
                        // different than the ones in the reference. According to
                        // the GSL authors, the new signs were verified to be
                        // correct by one of the original designers of the
                        // algorithm.
                        + stirling(f1)
                        + stirling(z)
                        - stirling(x1)
                        - stirling(w)
                {
                    continue;
                }

                break;
            }
            assert!(y >= 0);
            result = y as u64;
        }

        // Invert the result for p < 0.5.
        if p != self.p {
            self.n - result
        } else {
            result
        }
    }
}

#[cfg(test)]
mod test {
    use super::Binomial;
    use crate::distributions::Distribution;
    use crate::Rng;

    fn test_binomial_mean_and_variance<R: Rng>(n: u64, p: f64, rng: &mut R) {
        let binomial = Binomial::new(n, p);

        let expected_mean = n as f64 * p;
        let expected_variance = n as f64 * p * (1.0 - p);

        let mut results = [0.0; 1000];
        for i in results.iter_mut() {
            *i = binomial.sample(rng) as f64;
        }

        let mean = results.iter().sum::<f64>() / results.len() as f64;
        assert!(
            (mean as f64 - expected_mean).abs() < expected_mean / 50.0,
            "mean: {}, expected_mean: {}",
            mean,
            expected_mean
        );

        let variance =
            results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64;
        assert!(
            (variance - expected_variance).abs() < expected_variance / 10.0,
            "variance: {}, expected_variance: {}",
            variance,
            expected_variance
        );
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_binomial() {
        let mut rng = crate::test::rng(351);
        test_binomial_mean_and_variance(150, 0.1, &mut rng);
        test_binomial_mean_and_variance(70, 0.6, &mut rng);
        test_binomial_mean_and_variance(40, 0.5, &mut rng);
        test_binomial_mean_and_variance(20, 0.7, &mut rng);
        test_binomial_mean_and_variance(20, 0.5, &mut rng);
    }

    #[test]
    fn test_binomial_end_points() {
        let mut rng = crate::test::rng(352);
        assert_eq!(rng.sample(Binomial::new(20, 0.0)), 0);
        assert_eq!(rng.sample(Binomial::new(20, 1.0)), 20);
    }

    #[test]
    #[should_panic]
    fn test_binomial_invalid_lambda_neg() {
        Binomial::new(20, -10.0);
    }
}