1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
//! A type for working one-dimensional ranges. use super::Scalar; /// Some start and end position along a single axis. /// /// As an example, a **Rect** is made up of two **Range**s; one along the *x* axis, and one along /// the *y* axis. #[derive(Copy, Clone, Debug, PartialEq)] pub struct Range { /// The start of some `Range` along an axis. pub start: Scalar, /// The end of some `Range` along an axis. pub end: Scalar, } /// Represents either the **Start** or **End** **Edge** of a **Range**. #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub enum Edge { /// The beginning of a **Range**. Start, /// The end of a **Range**. End, } impl Range { /// Construct a new `Range` from a given range, i.e. `Range::new(start, end)`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range { start: 0.0, end: 10.0 }, Range::new(0.0, 10.0)); /// ``` pub fn new(start: Scalar, end: Scalar) -> Range { Range { start: start, end: end, } } /// Construct a new `Range` from a given length and its centered position. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 10.0), Range::from_pos_and_len(5.0, 10.0)); /// assert_eq!(Range::new(-5.0, 1.0), Range::from_pos_and_len(-2.0, 6.0)); /// assert_eq!(Range::new(-100.0, 200.0), Range::from_pos_and_len(50.0, 300.0)); /// ``` pub fn from_pos_and_len(pos: Scalar, len: Scalar) -> Range { let half_len = len / 2.0; let start = pos - half_len; let end = pos + half_len; Range::new(start, end) } /// The `start` value subtracted from the `end` value. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(-5.0, 5.0).magnitude(), 10.0); /// assert_eq!(Range::new(5.0, -5.0).magnitude(), -10.0); /// assert_eq!(Range::new(15.0, 10.0).magnitude(), -5.0); /// ``` pub fn magnitude(&self) -> Scalar { self.end - self.start } /// The absolute length of the Range aka the absolute magnitude. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(-5.0, 5.0).len(), 10.0); /// assert_eq!(Range::new(5.0, -5.0).len(), 10.0); /// assert_eq!(Range::new(15.0, 10.0).len(), 5.0); /// ``` pub fn len(&self) -> Scalar { self.magnitude().abs() } /// Return the value directly between the start and end values. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(-5.0, 5.0).middle(), 0.0); /// assert_eq!(Range::new(5.0, -5.0).middle(), 0.0); /// assert_eq!(Range::new(10.0, 15.0).middle(), 12.5); /// assert_eq!(Range::new(20.0, 40.0).middle(), 30.0); /// assert_eq!(Range::new(20.0, -40.0).middle(), -10.0); /// ``` pub fn middle(&self) -> Scalar { (self.end + self.start) / 2.0 } /// The current range with its start and end values swapped. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(-5.0, 5.0).invert(), Range::new(5.0, -5.0)); /// assert_eq!(Range::new(-10.0, 10.0).invert(), Range::new(10.0, -10.0)); /// assert_eq!(Range::new(0.0, 7.25).invert(), Range::new(7.25, 0.0)); /// assert_eq!(Range::new(5.0, 1.0).invert(), Range::new(1.0, 5.0)); /// ``` pub fn invert(self) -> Range { Range { start: self.end, end: self.start } } /// Map the given Scalar from `Self` to some other given `Range`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(0.0, 5.0); /// /// let b = Range::new(0.0, 10.0); /// assert_eq!(a.map_value_to(2.5, &b), 5.0); /// assert_eq!(a.map_value_to(0.0, &b), 0.0); /// assert_eq!(a.map_value_to(5.0, &b), 10.0); /// assert_eq!(a.map_value_to(-5.0, &b), -10.0); /// assert_eq!(a.map_value_to(10.0, &b), 20.0); /// /// let c = Range::new(10.0, -10.0); /// assert_eq!(a.map_value_to(2.5, &c), 0.0); /// assert_eq!(a.map_value_to(0.0, &c), 10.0); /// assert_eq!(a.map_value_to(5.0, &c), -10.0); /// assert_eq!(a.map_value_to(-5.0, &c), 30.0); /// assert_eq!(a.map_value_to(10.0, &c), -30.0); /// ``` pub fn map_value_to(&self, value: Scalar, other: &Range) -> Scalar { ::utils::map_range(value, self.start, self.end, other.start, other.end) } /// Shift the `Range` start and end points by a given `Scalar`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 5.0).shift(5.0), Range::new(5.0, 10.0)); /// assert_eq!(Range::new(0.0, 5.0).shift(-5.0), Range::new(-5.0, 0.0)); /// assert_eq!(Range::new(5.0, -5.0).shift(-5.0), Range::new(0.0, -10.0)); /// ``` pub fn shift(self, amount: Scalar) -> Range { Range { start: self.start + amount, end: self.end + amount } } /// The direction of the Range represented as a normalised scalar. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 5.0).direction(), 1.0); /// assert_eq!(Range::new(0.0, 0.0).direction(), 0.0); /// assert_eq!(Range::new(0.0, -5.0).direction(), -1.0); /// ``` pub fn direction(&self) -> Scalar { if self.start < self.end { 1.0 } else if self.start > self.end { -1.0 } else { 0.0 } } /// Converts the Range to an undirected Range. By ensuring that `start` <= `end`. /// /// If `start` > `end`, then the start and end points will be swapped. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 5.0).undirected(), Range::new(0.0, 5.0)); /// assert_eq!(Range::new(5.0, 1.0).undirected(), Range::new(1.0, 5.0)); /// assert_eq!(Range::new(10.0, -10.0).undirected(), Range::new(-10.0, 10.0)); /// ``` pub fn undirected(self) -> Range { if self.start > self.end { self.invert() } else { self } } /// The Range that encompasses both self and the given Range. /// /// The returned Range's `start` will always be <= its `end`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(0.0, 3.0); /// let b = Range::new(7.0, 10.0); /// assert_eq!(a.max(b), Range::new(0.0, 10.0)); /// /// let c = Range::new(-20.0, -30.0); /// let d = Range::new(5.0, -7.5); /// assert_eq!(c.max(d), Range::new(-30.0, 5.0)); /// ``` pub fn max(self, other: Self) -> Range { let start = self.start.min(self.end).min(other.start).min(other.end); let end = self.start.max(self.end).max(other.start).max(other.end); Range::new(start, end) } /// The Range that represents the range of the overlap between two Ranges if there is some. /// /// Note that If one end of `self` aligns exactly with the opposite end of `other`, `Some` /// `Range` will be returned with a magnitude of `0.0`. This is useful for algorithms that /// involve calculating the visibility of widgets, as it allows for including widgets whose /// bounding box may be a one dimensional straight line. /// /// The returned `Range`'s `start` will always be <= its `end`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(0.0, 6.0); /// let b = Range::new(4.0, 10.0); /// assert_eq!(a.overlap(b), Some(Range::new(4.0, 6.0))); /// /// let c = Range::new(10.0, -30.0); /// let d = Range::new(-5.0, 20.0); /// assert_eq!(c.overlap(d), Some(Range::new(-5.0, 10.0))); /// /// let e = Range::new(0.0, 2.5); /// let f = Range::new(50.0, 100.0); /// assert_eq!(e.overlap(f), None); /// ``` pub fn overlap(mut self, mut other: Self) -> Option<Range> { self = self.undirected(); other = other.undirected(); let start = ::utils::partial_max(self.start, other.start); let end = ::utils::partial_min(self.end, other.end); let magnitude = end - start; if magnitude >= 0.0 { Some(Range::new(start, end)) } else { None } } /// The Range that encompasses both self and the given Range. /// /// The same as [**Range::max**](./struct.Range#method.max) but retains `self`'s original /// direction. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(0.0, 3.0); /// let b = Range::new(7.0, 10.0); /// assert_eq!(a.max_directed(b), Range::new(0.0, 10.0)); /// /// let c = Range::new(-20.0, -30.0); /// let d = Range::new(5.0, -7.5); /// assert_eq!(c.max_directed(d), Range::new(5.0, -30.0)); /// ``` pub fn max_directed(self, other: Self) -> Range { if self.start <= self.end { self.max(other) } else { self.max(other).invert() } } /// Is the given scalar within our range. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let range = Range::new(0.0, 10.0); /// assert!(range.is_over(5.0)); /// assert!(!range.is_over(12.0)); /// assert!(!range.is_over(-1.0)); /// assert!(range.is_over(0.0)); /// assert!(range.is_over(10.0)); /// ``` pub fn is_over(&self, pos: Scalar) -> bool { let Range { start, end } = self.undirected(); pos >= start && pos <= end } /// Round the values at both ends of the Range and return the result. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.25, 9.5).round(), Range::new(0.0, 10.0)); /// assert_eq!(Range::new(4.95, -5.3).round(), Range::new(5.0, -5.0)); /// ``` pub fn round(self) -> Range { Range::new(self.start.round(), self.end.round()) } /// Floor the values at both ends of the Range and return the result. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.25, 9.5).floor(), Range::new(0.0, 9.0)); /// assert_eq!(Range::new(4.95, -5.3).floor(), Range::new(4.0, -6.0)); /// ``` pub fn floor(self) -> Range { Range::new(self.start.floor(), self.end.floor()) } /// The Range with some padding given to the `start` value. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 10.0).pad_start(2.0), Range::new(2.0, 10.0)); /// assert_eq!(Range::new(10.0, 0.0).pad_start(2.0), Range::new(8.0, 0.0)); /// ``` pub fn pad_start(mut self, pad: Scalar) -> Range { self.start += if self.start <= self.end { pad } else { -pad }; self } /// The Range with some padding given to the `end` value. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 10.0).pad_end(2.0), Range::new(0.0, 8.0)); /// assert_eq!(Range::new(10.0, 0.0).pad_end(2.0), Range::new(10.0, 2.0)); /// ``` pub fn pad_end(mut self, pad: Scalar) -> Range { self.end += if self.start <= self.end { -pad } else { pad }; self } /// The Range with some given padding to be applied to each end. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 10.0).pad(2.0), Range::new(2.0, 8.0)); /// assert_eq!(Range::new(10.0, 0.0).pad(2.0), Range::new(8.0, 2.0)); /// ``` pub fn pad(self, pad: Scalar) -> Range { self.pad_start(pad).pad_end(pad) } /// The Range with some padding given for each end. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 10.0).pad_ends(1.0, 2.0), Range::new(1.0, 8.0)); /// assert_eq!(Range::new(10.0, 0.0).pad_ends(4.0, 3.0), Range::new(6.0, 3.0)); /// ``` pub fn pad_ends(self, start: Scalar, end: Scalar) -> Range { self.pad_start(start).pad_end(end) } /// Clamp the given value to the range. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert_eq!(Range::new(0.0, 5.0).clamp_value(7.0), 5.0); /// assert_eq!(Range::new(5.0, -2.5).clamp_value(-3.0), -2.5); /// assert_eq!(Range::new(5.0, 10.0).clamp_value(0.0), 5.0); /// ``` pub fn clamp_value(&self, value: Scalar) -> Scalar { ::utils::clamp(value, self.start, self.end) } /// Stretch the end that is closest to the given value only if it lies outside the Range. /// /// The resulting Range will retain the direction of the original range. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(2.5, 5.0); /// assert_eq!(a.stretch_to_value(10.0), Range::new(2.5, 10.0)); /// assert_eq!(a.stretch_to_value(0.0), Range::new(0.0, 5.0)); /// /// let b = Range::new(0.0, -5.0); /// assert_eq!(b.stretch_to_value(10.0), Range::new(10.0, -5.0)); /// assert_eq!(b.stretch_to_value(-10.0), Range::new(0.0, -10.0)); /// ``` pub fn stretch_to_value(self, value: Scalar) -> Range { let Range { start, end } = self; if start <= end { if value < start { Range { start: value, end: end } } else if value > end { Range { start: start, end: value } } else { self } } else { if value < end { Range { start: start, end: value } } else if value > start { Range { start: value, end: end } } else { self } } } /// Does `self` have the same direction as `other`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// assert!(Range::new(0.0, 1.0).has_same_direction(Range::new(100.0, 200.0))); /// assert!(Range::new(0.0, -5.0).has_same_direction(Range::new(-2.5, -6.0))); /// assert!(!Range::new(0.0, 5.0).has_same_direction(Range::new(2.5, -2.5))); /// ``` pub fn has_same_direction(self, other: Self) -> bool { let self_direction = self.start <= self.end; let other_direction = other.start <= other.end; self_direction == other_direction } /// Align the `start` of `self` to the `start` of the `other` **Range**. /// /// If the direction of `other` is different to `self`, `self`'s `end` will be aligned to the /// `start` of `other` instead. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(2.5, 7.5); /// let b = Range::new(0.0, 10.0); /// assert_eq!(a.align_start_of(b), Range::new(0.0, 5.0)); /// assert_eq!(b.align_start_of(a), Range::new(2.5, 12.5)); /// /// let c = Range::new(2.5, -2.5); /// let d = Range::new(-5.0, 5.0); /// assert_eq!(c.align_start_of(d), Range::new(0.0, -5.0)); /// assert_eq!(d.align_start_of(c), Range::new(-7.5, 2.5)); /// ``` pub fn align_start_of(self, other: Self) -> Self { let diff = if self.has_same_direction(other) { other.start - self.start } else { other.start - self.end }; self.shift(diff) } /// Align the `end` of `self` to the `end` of the `other` **Range**. /// /// If the direction of `other` is different to `self`, `self`'s `start` will be aligned to the /// `end` of `other` instead. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(2.5, 7.5); /// let b = Range::new(0.0, 10.0); /// assert_eq!(a.align_end_of(b), Range::new(5.0, 10.0)); /// assert_eq!(b.align_end_of(a), Range::new(-2.5, 7.5)); /// /// let c = Range::new(2.5, -2.5); /// let d = Range::new(-5.0, 5.0); /// assert_eq!(c.align_end_of(d), Range::new(5.0, 0.0)); /// assert_eq!(d.align_end_of(c), Range::new(-2.5, 7.5)); /// ``` pub fn align_end_of(self, other: Self) -> Self { let diff = if self.has_same_direction(other) { other.end - self.end } else { other.end - self.start }; self.shift(diff) } /// Align the middle of `self` to the middle of the `other` **Range**. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(0.0, 5.0); /// let b = Range::new(0.0, 10.0); /// assert_eq!(a.align_middle_of(b), Range::new(2.5, 7.5)); /// assert_eq!(b.align_middle_of(a), Range::new(-2.5, 7.5)); /// /// let c = Range::new(2.5, -2.5); /// let d = Range::new(-10.0, 0.0); /// assert_eq!(c.align_middle_of(d), Range::new(-2.5, -7.5)); /// assert_eq!(d.align_middle_of(c), Range::new(-5.0, 5.0)); /// ``` pub fn align_middle_of(self, other: Self) -> Self { let diff = other.middle() - self.middle(); self.shift(diff) } /// Aligns the `start` of `self` with the `end` of `other`. /// /// If the directions are opposite, aligns the `end` of self with the `end` of `other`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(2.5, 7.5); /// let b = Range::new(0.0, 10.0); /// assert_eq!(a.align_after(b), Range::new(10.0, 15.0)); /// assert_eq!(b.align_after(a), Range::new(7.5, 17.5)); /// /// let c = Range::new(2.5, -2.5); /// let d = Range::new(-5.0, 5.0); /// assert_eq!(c.align_after(d), Range::new(10.0, 5.0)); /// assert_eq!(d.align_after(c), Range::new(-12.5, -2.5)); /// ``` pub fn align_after(self, other: Self) -> Self { let diff = if self.has_same_direction(other) { other.end - self.start } else { other.end - self.end }; self.shift(diff) } /// Aligns the `end` of `self` with the `start` of `other`. /// /// If the directions are opposite, aligns the `start` of self with the `start` of `other`. /// /// # Examples /// /// ``` /// use conrod_core::Range; /// /// let a = Range::new(2.5, 7.5); /// let b = Range::new(0.0, 10.0); /// assert_eq!(a.align_before(b), Range::new(-5.0, 0.0)); /// assert_eq!(b.align_before(a), Range::new(-7.5, 2.5)); /// /// let c = Range::new(2.5, -2.5); /// let d = Range::new(-5.0, 5.0); /// assert_eq!(c.align_before(d), Range::new(-5.0, -10.0)); /// assert_eq!(d.align_before(c), Range::new(2.5, 12.5)); /// ``` pub fn align_before(self, other: Self) -> Self { let diff = if self.has_same_direction(other) { other.start - self.end } else { other.start - self.start }; self.shift(diff) } /// Align `self` to `other` along the *x* axis in accordance with the given `Align` variant. pub fn align_to(self, align: super::Align, other: Self) -> Self { match align { super::Align::Start => self.align_start_of(other), super::Align::Middle => self.align_middle_of(other), super::Align::End => self.align_end_of(other), } } /// The closest **Edge** of `self` to the given `scalar`. /// /// Returns **Start** if the distance between both **Edge**s is equal. /// /// # Examples /// /// ``` /// use conrod_core::position::{Edge, Range}; /// /// assert_eq!(Range::new(0.0, 10.0).closest_edge(4.0), Edge::Start); /// assert_eq!(Range::new(0.0, 10.0).closest_edge(7.0), Edge::End); /// assert_eq!(Range::new(0.0, 10.0).closest_edge(5.0), Edge::Start); /// ``` pub fn closest_edge(&self, scalar: Scalar) -> Edge { let Range { start, end } = *self; let start_diff = if scalar < start { start - scalar } else { scalar - start }; let end_diff = if scalar < end { end - scalar } else { scalar - end }; if start_diff <= end_diff { Edge::Start } else { Edge::End } } }