1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
/// The `libc_bitflags!` macro helps with a common use case of defining a public bitflags type
/// with values from the libc crate. It is used the same way as the `bitflags!` macro, except
/// that only the name of the flag value has to be given.
///
/// The `libc` crate must be in scope with the name `libc`.
///
/// # Example
/// ```
/// libc_bitflags!{
///     pub struct ProtFlags: libc::c_int {
///         PROT_NONE;
///         PROT_READ;
///         /// PROT_WRITE enables write protect
///         PROT_WRITE;
///         PROT_EXEC;
///         #[cfg(any(target_os = "linux", target_os = "android"))]
///         PROT_GROWSDOWN;
///         #[cfg(any(target_os = "linux", target_os = "android"))]
///         PROT_GROWSUP;
///     }
/// }
/// ```
///
/// Example with casting, due to a mistake in libc. In this example, the
/// various flags have different types, so we cast the broken ones to the right
/// type.
///
/// ```
/// libc_bitflags!{
///     pub struct SaFlags: libc::c_ulong {
///         SA_NOCLDSTOP as libc::c_ulong;
///         SA_NOCLDWAIT;
///         SA_NODEFER as libc::c_ulong;
///         SA_ONSTACK;
///         SA_RESETHAND as libc::c_ulong;
///         SA_RESTART as libc::c_ulong;
///         SA_SIGINFO;
///     }
/// }
/// ```
macro_rules! libc_bitflags {
    (
        $(#[$outer:meta])*
        pub struct $BitFlags:ident: $T:ty {
            $(
                $(#[$inner:ident $($args:tt)*])*
                $Flag:ident $(as $cast:ty)*;
            )+
        }
    ) => {
        ::bitflags::bitflags! {
            $(#[$outer])*
            pub struct $BitFlags: $T {
                $(
                    $(#[$inner $($args)*])*
                    const $Flag = libc::$Flag $(as $cast)*;
                )+
            }
        }
    };
}

/// The `libc_enum!` macro helps with a common use case of defining an enum exclusively using
/// values from the `libc` crate. This macro supports both `pub` and private `enum`s.
///
/// The `libc` crate must be in scope with the name `libc`.
///
/// # Example
/// ```
/// libc_enum!{
///     pub enum ProtFlags {
///         PROT_NONE,
///         PROT_READ,
///         PROT_WRITE,
///         PROT_EXEC,
///         #[cfg(any(target_os = "linux", target_os = "android"))]
///         PROT_GROWSDOWN,
///         #[cfg(any(target_os = "linux", target_os = "android"))]
///         PROT_GROWSUP,
///     }
/// }
/// ```
macro_rules! libc_enum {
    // Exit rule.
    (@make_enum
        {
            $v:vis
            name: $BitFlags:ident,
            attrs: [$($attrs:tt)*],
            entries: [$($entries:tt)*],
        }
    ) => {
        $($attrs)*
        #[derive(Clone, Copy, Debug, Eq, Hash, Ord, PartialEq, PartialOrd)]
        $v enum $BitFlags {
            $($entries)*
        }
    };

    // Done accumulating.
    (@accumulate_entries
        {
            $v:vis
            name: $BitFlags:ident,
            attrs: $attrs:tt,
        },
        $entries:tt;
    ) => {
        libc_enum! {
            @make_enum
            {
                $v
                name: $BitFlags,
                attrs: $attrs,
                entries: $entries,
            }
        }
    };

    // Munch an attr.
    (@accumulate_entries
        $prefix:tt,
        [$($entries:tt)*];
        #[$attr:meta] $($tail:tt)*
    ) => {
        libc_enum! {
            @accumulate_entries
            $prefix,
            [
                $($entries)*
                #[$attr]
            ];
            $($tail)*
        }
    };

    // Munch last ident if not followed by a comma.
    (@accumulate_entries
        $prefix:tt,
        [$($entries:tt)*];
        $entry:ident
    ) => {
        libc_enum! {
            @accumulate_entries
            $prefix,
            [
                $($entries)*
                $entry = libc::$entry,
            ];
        }
    };

    // Munch an ident; covers terminating comma case.
    (@accumulate_entries
        $prefix:tt,
        [$($entries:tt)*];
        $entry:ident, $($tail:tt)*
    ) => {
        libc_enum! {
            @accumulate_entries
            $prefix,
            [
                $($entries)*
                $entry = libc::$entry,
            ];
            $($tail)*
        }
    };

    // Munch an ident and cast it to the given type; covers terminating comma.
    (@accumulate_entries
        $prefix:tt,
        [$($entries:tt)*];
        $entry:ident as $ty:ty, $($tail:tt)*
    ) => {
        libc_enum! {
            @accumulate_entries
            $prefix,
            [
                $($entries)*
                $entry = libc::$entry as $ty,
            ];
            $($tail)*
        }
    };

    // Entry rule.
    (
        $(#[$attr:meta])*
        $v:vis enum $BitFlags:ident {
            $($vals:tt)*
        }
    ) => {
        libc_enum! {
            @accumulate_entries
            {
                $v
                name: $BitFlags,
                attrs: [$(#[$attr])*],
            },
            [];
            $($vals)*
        }
    };
}

/// A Rust version of the familiar C `offset_of` macro.  It returns the byte
/// offset of `field` within struct `ty`
#[cfg(not(target_os = "redox"))]
macro_rules! offset_of {
    ($ty:ty, $field:ident) => {{
        // Safe because we don't actually read from the dereferenced pointer
        #[allow(unused_unsafe)] // for when the macro is used in an unsafe block
        unsafe {
            &(*(ptr::null() as *const $ty)).$field as *const _ as usize
        }
    }}
}