1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
//! **Walker** is a trait providing a variety of useful methods for traversing graph types.


use ::{EdgeIndex, NodeIndex};
use petgraph::graph::IndexType;
use std::marker::PhantomData;
use std::ops::Index;


/// Short-hand for an edge node index pair.
pub type IndexPair<Ix> = (EdgeIndex<Ix>, NodeIndex<Ix>);


/// A trait providing a variety of useful methods for traversing some graph type **G**.
///
/// **Walker** can be likened to the std **Iterator** trait. It's methods behave similarly, but it
/// is different in that it takes a reference to some graph as an argument to its "next" method.
///
/// **Walker** method return types (besides the iterators) never borrow the graph. This means that
/// we can still safely mutably borrow from the graph whilst we traverse it.
pub trait Walker<G> {
    /// The unsigned integer type used for node and edge indices.
    type Index: IndexType;

    /// Fetch the `EdgeIndex` and `NodeIndex` to the next neighbour in our walk through the given
    /// **Graph**.
    fn next(&mut self, graph: &G) -> Option<IndexPair<Self::Index>>;

    /// The next edge in our walk for the given **Graph**.
    #[inline]
    fn next_edge(&mut self, graph: &G) -> Option<EdgeIndex<Self::Index>> {
        self.next(graph).map(|(e, _)| e)
    }

    /// The next node in our walk for the given **Graph**.
    #[inline]
    fn next_node(&mut self, graph: &G) -> Option<NodeIndex<Self::Index>> {
        self.next(graph).map(|(_, n)| n)
    }

    /// Counts all the steps in the entire walk of the given graph.
    #[inline]
    fn count(mut self, graph: &G) -> usize where Self: Sized {
        let mut count = 0;
        while let Some(_) = self.next(graph) {
            count += 1;
        }
        count
    }

    /// Walks the whole walk until reaching and returning the last edge node pair.
    #[inline]
    fn last(mut self, graph: &G) -> Option<IndexPair<Self::Index>> where Self: Sized {
        let mut maybe_last_pair = None;
        while let Some(pair) = self.next(graph) {
            maybe_last_pair = Some(pair);
        }
        maybe_last_pair
    }

    /// Walks the whole walk until reaching and returning the last edge.
    #[inline]
    fn last_edge(self, graph: &G) -> Option<EdgeIndex<Self::Index>> where Self: Sized {
        self.last(graph).map(|(e, _)| e)
    }

    /// Walks the whole walk until reaching and returning the last node.
    #[inline]
    fn last_node(self, graph: &G) -> Option<NodeIndex<Self::Index>> where Self: Sized {
        self.last(graph).map(|(_, n)| n)
    }

    /// Walks "n" number of steps and produces the resulting edge node pair.
    #[inline]
    fn nth(mut self, graph: &G, n: usize) -> Option<IndexPair<Self::Index>>
        where Self: Sized
    {
        (0..n+1)
            .map(|_| self.next(graph))
            .nth(n)
            .and_then(|maybe_pair| maybe_pair)
    }

    /// Walks "n" number of steps and produces the resulting edge.
    #[inline]
    fn nth_edge(self, graph: &G, n: usize) -> Option<EdgeIndex<Self::Index>>
        where Self: Sized
    {
        self.nth(graph, n).map(|(e, _)| e)
    }

    /// Walks "n" number of steps and produces the resulting node.
    #[inline]
    fn nth_node(self, graph: &G, n: usize) -> Option<NodeIndex<Self::Index>>
        where Self: Sized
    {
        self.nth(graph, n).map(|(_, n)| n)
    }

    /// Produces a walker that will walk the entirey of `self` before walking the entirey of other.
    #[inline]
    fn chain<O>(self, other: O) -> Chain<G, Self::Index, Self, O>
        where Self: Sized,
              O: Walker<G, Index=Self::Index>,
    {
        Chain {
            a: Some(self),
            b: other,
            _graph: PhantomData,
            _index: PhantomData,
        }
    }

    /// Creates a walker that applies the predicate to each element returned by this walker.
    /// The only elements that will be yielded are those that make the predicate evaluate to true.
    #[inline]
    fn filter<P>(self, predicate: P) -> Filter<Self, P>
        where Self: Sized,
              P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool,
    {
        Filter {
            walker: self,
            predicate: predicate,
        }
    }

    /// Creates a walker that has a `.peek(&graph)` method that returns an optional next neighbor.
    #[inline]
    fn peekable(self) -> Peekable<G, Self::Index, Self> where Self: Sized {
        Peekable {
            walker: self,
            maybe_next: None,
            _graph: PhantomData,
        }
    }

    /// Creates a walker that invokes the predicate on elements until it returns false. Once the
    /// predicate returns false, that element and all further elements are yielded.
    #[inline]
    fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
        where Self: Sized,
              P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool,
    {
        SkipWhile {
            walker: self,
            maybe_predicate: Some(predicate),
        }
    }

    /// Creates a walker that yields elements so long as the predicate returns true. After the
    /// predicate returns false for the first time, no further elements will be yielded.
    #[inline]
    fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
        where Self: Sized,
              P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool,
    {
        TakeWhile {
            maybe_walker: Some(self),
            predicate: predicate,
        }
    }

    /// Creates a walker that skips the first n steps of this walk, and then yields all further
    /// steps.
    #[inline]
    fn skip(self, n: usize) -> Skip<G, Self::Index, Self> where Self: Sized {
        Skip {
            walker: self,
            to_skip: n,
            _graph: PhantomData,
            _index: PhantomData,
        }
    }

    /// Creates a walker that yields the first n steps of this walk.
    #[inline]
    fn take(self, n: usize) -> Take<G, Self::Index, Self> where Self: Sized {
        Take {
            walker: self,
            to_take: n,
            _graph: PhantomData,
            _index: PhantomData,
        }
    }

    /// Tests whether the predicate holds true for all steps in the walk.
    #[inline]
    fn all<P>(&mut self, graph: &G, mut predicate: P) -> bool
        where P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool,
    {
        while let Some((e, n)) = self.next(graph) {
            if !predicate(graph, e, n) {
                return false;
            }
        }
        true
    }

    /// Tests whether any step in the walk satisfies the given predicate.
    ///
    /// Does not step the walker past the first found step.
    #[inline]
    fn any<P>(&mut self, graph: &G, mut predicate: P) -> bool
        where P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool,
    {
        while let Some((e, n)) = self.next(graph) {
            if predicate(graph, e, n) {
                return true;
            }
        }
        false
    }

    /// Returns the first edge node index pair satisfying the specified predicate.
    /// 
    /// Does not consume the walker past the first found step.
    #[inline]
    fn find<P>(&mut self, graph: &G, mut predicate: P) -> Option<IndexPair<Self::Index>>
        where P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool
    {
        while let Some((e, n)) = self.next(graph) {
            if predicate(graph, e, n) {
                return Some((e, n));
            }
        }
        None
    }

    /// Returns the edge index satisfying the specified predicate.
    /// 
    /// Does not consume the walker past the first found step.
    #[inline]
    fn find_edge<P>(&mut self, graph: &G, predicate: P) -> Option<EdgeIndex<Self::Index>>
        where P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool
    {
        self.find(graph, predicate).map(|(e, _)| e)
    }

    /// Returns the node index satisfying the specified predicate.
    /// 
    /// Does not consume the walker past the first found step.
    #[inline]
    fn find_node<P>(&mut self, graph: &G, predicate: P) -> Option<NodeIndex<Self::Index>>
        where P: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> bool
    {
        self.find(graph, predicate).map(|(_, n)| n)
    }

    /// Repeats the walker endlessly.
    #[inline]
    fn cycle(self) -> Cycle<G, Self::Index, Self> where Self: Clone + Sized {
        let clone = self.clone();
        Cycle {
            walker: self,
            clone: clone,
            _graph: PhantomData,
            _index: PhantomData,
        }
    }

    /// Performs a fold operation over the entire walker, returning the eventual state at the end
    /// of the walk.
    /// 
    /// This operation is sometimes called 'reduce' or 'inject'.
    #[inline]
    fn fold<B, F>(mut self, init: B, graph: &G, mut f: F) -> B
        where Self: Sized,
              F: FnMut(B, &G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>) -> B
    {
        let mut accum = init;
        while let Some((e, n)) = self.next(graph) {
            accum = f(accum, graph, e, n);
        }
        accum
    }

    /// Creates a walker that calls a function with a reference to each index pair before yielding
    /// them. This is often useful for debugging a walker pipeline.
    #[inline]
    fn inspect<F>(self, f: F) -> Inspect<Self, F>
        where Self: Sized,
              F: FnMut(&G, EdgeIndex<Self::Index>, NodeIndex<Self::Index>),
    {
        Inspect {
            walker: self,
            f: f,
        }
    }

    /// Converts the walker into an iterator yielding index pairs.
    ///
    /// The returned iterator borrows the graph.
    #[inline]
    fn iter(self, graph: &G) -> Iter<G, Self::Index, Self>
        where Self: Sized,
    {
        Iter {
            walker: self,
            graph: graph,
            _index: PhantomData,
        }
    }

    /// Converts the walker into an iterator yielding `(&e, &n)`, where `e` is the edge weight for
    /// the next `EdgeIndex` and `n` is the node weight for the next `NodeIndex`.
    ///
    /// The returned iterator borrows the graph.
    #[inline]
    fn iter_weights(self, graph: &G) -> IterWeights<G, Self::Index, Self>
        where Self: Sized,
    {
        IterWeights {
            walker: self,
            graph: graph,
            _index: PhantomData,
        }
    }

}


// /// The **Walker** synonym to the **std::iter::once** function.
// ///
// /// Returns a walker that takes just one step, yielding the given index pair.
// pub fn once<Ix>(e: EdgeIndex<Ix>, n: NodeIndex<Ix>) -> Once<Ix> {
// }


/// Recursively walks a graph using the recursive function `recursive_fn`.
#[derive(Clone, Debug)]
pub struct Recursive<G, Ix, F> {
    next: NodeIndex<Ix>,
    recursive_fn: F,
    _graph: PhantomData<G>,
}

impl<G, Ix, F> Recursive<G, Ix, F> {

    /// Construct a new **Recursive** **Walker** starting from the node at the given index.
    pub fn new(start: NodeIndex<Ix>, recursive_fn: F) -> Self
        where Ix: IndexType,
              F: FnMut(&G, NodeIndex<Ix>) -> Option<IndexPair<Ix>>,
    {
        Recursive {
            next: start,
            recursive_fn: recursive_fn,
            _graph: PhantomData,
        }
    }

}

impl<G, Ix, F> Walker<G> for Recursive<G, Ix, F>
    where Ix: IndexType,
          F: FnMut(&G, NodeIndex<Ix>) -> Option<IndexPair<Ix>>,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        let Recursive { ref mut next, ref mut recursive_fn, .. } = *self;
        recursive_fn(graph, *next).map(|(e, n)| {
            *next = n;
            (e, n)
        })
    }
}


/// Walks the entirety of `a` before walking the entirety of `b`.
#[derive(Clone, Debug)]
pub struct Chain<G, Ix, A, B> {
    a: Option<A>,
    b: B,
    _graph: PhantomData<G>,
    _index: PhantomData<Ix>,
}


impl<G, Ix, A, B> Walker<G> for Chain<G, Ix, A, B>
    where Ix: IndexType,
          A: Walker<G, Index=Ix>,
          B: Walker<G, Index=Ix>,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        let Chain { ref mut a, ref mut b, .. } = *self;
        match a.as_mut().and_then(|walker| walker.next(graph)) {
            Some(step) => Some(step),
            None => {
                *a = None;
                b.next(graph)
            },
        }
    }
}


/// A walker that applies some given predicate to each element returned by its walker.
/// The only index pairs that will be yielded are those that make the predicate evaluate to true.
#[derive(Clone, Debug)]
pub struct Filter<W, P> {
    walker: W,
    predicate: P,
}


impl<G, Ix, W, P> Walker<G> for Filter<W, P>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
          P: FnMut(&G, EdgeIndex<Ix>, NodeIndex<Ix>) -> bool,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        while let Some((e, n)) = self.walker.next(graph) {
            if (self.predicate)(graph, e, n) {
                return Some((e, n));
            }
        }
        None
    }
}


/// A walker that has a `.peek(&graph)` method that returns an optional next neighbor.
#[derive(Clone, Debug)]
pub struct Peekable<G, Ix, W> where Ix: IndexType {
    walker: W,
    maybe_next: Option<IndexPair<Ix>>,
    _graph: PhantomData<G>,
}


impl<G, Ix, W> Peekable<G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
{

    /// The edge node index pair of the neighbor at the next step in our walk of the given graph.
    #[inline]
    pub fn peek(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        self.maybe_next.or_else(|| {
            self.maybe_next = self.walker.next(graph);
            self.maybe_next
        })
    }

    /// The edge index of the neighbor at the next step in our walk of the given graph.
    #[inline]
    pub fn peek_edge(&mut self, graph: &G) -> Option<EdgeIndex<Ix>> {
        self.peek(graph).map(|(e, _)| e)
    }

    /// The node index of the neighbor at the next step in our walk of the given graph.
    #[inline]
    pub fn peek_node(&mut self, graph: &G) -> Option<NodeIndex<Ix>> {
        self.peek(graph).map(|(_, n)| n)
    }

}


impl<G, Ix, W> Walker<G> for Peekable<G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        self.maybe_next.take().or_else(|| {
            self.walker.next(graph)
        })
    }
}


/// A walker that invokes the predicate on elements until it returns false. Once the predicate
/// returns false, that element and all further elements are yielded.
#[derive(Clone, Debug)]
pub struct SkipWhile<W, P> {
    walker: W,
    maybe_predicate: Option<P>,
}


impl<G, Ix, W, P> Walker<G> for SkipWhile<W, P>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
          P: FnMut(&G, EdgeIndex<Ix>, NodeIndex<Ix>) -> bool,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        match self.maybe_predicate.take() {
            Some(mut predicate) => {
                while let Some((e, n)) = self.walker.next(graph) {
                    if !predicate(graph, e, n) {
                        return Some((e, n));
                    }
                }
                None
            },
            None => self.walker.next(graph),
        }
    }
}


/// A walker that yields elements so long as the predicate returns true. After the
/// predicate returns false for the first time, no further elements will be yielded.
#[derive(Clone, Debug)]
pub struct TakeWhile<W, P> {
    maybe_walker: Option<W>,
    predicate: P,
}


impl<G, Ix, W, P> Walker<G> for TakeWhile<W, P>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
          P: FnMut(&G, EdgeIndex<Ix>, NodeIndex<Ix>) -> bool,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        let TakeWhile { ref mut maybe_walker, ref mut predicate } = *self;
        let maybe_next_idx_pair = maybe_walker.as_mut().and_then(|walker| walker.next(graph));
        if let Some((e, n)) = maybe_next_idx_pair {
            if predicate(graph, e, n) {
                return Some((e, n));
            } else {
                *maybe_walker = None;
            }
        }
        None
    }
}


/// A walker that skips the first n steps of this walk, and then yields all further steps.
#[derive(Clone, Debug)]
pub struct Skip<G, Ix, W> {
    walker: W,
    to_skip: usize,
    _graph: PhantomData<G>,
    _index: PhantomData<Ix>,
}


impl<G, Ix, W> Walker<G> for Skip<G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        if self.to_skip > 0 {
            for _ in 0..self.to_skip {
                self.walker.next(graph);
            }
            self.to_skip = 0;
        }
        self.walker.next(graph)
    }
}


/// A walker that yields the first n steps of this walk.
#[derive(Clone, Debug)]
pub struct Take<G, Ix, W> {
    walker: W,
    to_take: usize,
    _graph: PhantomData<G>,
    _index: PhantomData<Ix>,
}


impl<G, Ix, W> Walker<G> for Take<G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        if self.to_take > 0 {
            self.to_take -= 1;
            self.walker.next(graph)
        } else {
            None
        }
    }
}


/// A walker that repeats its internal walker endlessly.
#[derive(Clone, Debug)]
pub struct Cycle<G, Ix, W> {
    walker: W,
    clone: W,
    _graph: PhantomData<G>,
    _index: PhantomData<Ix>,
}


impl<G, Ix, W> Walker<G> for Cycle<G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix> + Clone,
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        self.clone.next(graph).or_else(|| {
            self.clone = self.walker.clone();
            self.clone.next(graph)
        })
    }
}


/// A walker that calls a function with a reference to each index pair before yielding them.
/// This is often useful for debugging a walker pipeline.
#[derive(Clone, Debug)]
pub struct Inspect<W, F> {
    walker: W,
    f: F,
}


impl<G, Ix, W, F> Walker<G> for Inspect<W, F>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
          F: FnMut(&G, EdgeIndex<Ix>, NodeIndex<Ix>),
{
    type Index = Ix;
    #[inline]
    fn next(&mut self, graph: &G) -> Option<IndexPair<Ix>> {
        self.walker.next(graph).map(|(e, n)| {
            (self.f)(graph, e, n);
            (e, n)
        })
    }
}


/// An iterator yielding index pairs produced by its internal walker and graph.
#[derive(Clone, Debug)]
pub struct Iter<'a, G: 'a, Ix, W> {
    graph: &'a G,
    walker: W,
    _index: PhantomData<Ix>,
}

impl<'a, G, Ix, W> Iter<'a, G, Ix, W> {

    /// Convert to an iterator that only yields the edge indices.
    #[inline]
    pub fn edges(self) -> IterEdges<'a, G, Ix, W> {
        let Iter { graph, walker, .. } = self;
        IterEdges {
            graph: graph,
            walker: walker,
            _index: PhantomData,
        }
    }

    /// Convert to an iterator that only yields the node indices.
    #[inline]
    pub fn nodes(self) -> IterNodes<'a, G, Ix, W> {
        let Iter { graph, walker, .. } = self;
        IterNodes {
            graph: graph,
            walker: walker,
            _index: PhantomData,
        }
    }

}

impl<'a, G, Ix, W> Iterator for Iter<'a, G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
{
    type Item = IndexPair<Ix>;
    #[inline]
    fn next(&mut self) -> Option<IndexPair<Ix>> {
        let Iter { ref mut walker, ref graph, .. } = *self;
        walker.next(graph)
    }
}


/// An iterator yielding edge indices produced by its internal walker and graph.
#[derive(Clone, Debug)]
pub struct IterEdges<'a, G: 'a, Ix, W> {
    graph: &'a G,
    walker: W,
    _index: PhantomData<Ix>,
}

impl<'a, G, Ix, W> Iterator for IterEdges<'a, G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
{
    type Item = EdgeIndex<Ix>;
    #[inline]
    fn next(&mut self) -> Option<EdgeIndex<Ix>> {
        let IterEdges { ref mut walker, ref graph, .. } = *self;
        walker.next_edge(graph)
    }
}


/// An iterator yielding node indices produced by its internal walker and graph.
#[derive(Clone, Debug)]
pub struct IterNodes<'a, G: 'a, Ix, W> {
    graph: &'a G,
    walker: W,
    _index: PhantomData<Ix>,
}

impl<'a, G, Ix, W> Iterator for IterNodes<'a, G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
{
    type Item = NodeIndex<Ix>;
    #[inline]
    fn next(&mut self) -> Option<NodeIndex<Ix>> {
        let IterNodes { ref mut walker, ref graph, .. } = *self;
        walker.next_node(graph)
    }
}


/// An iterator yielding weights associated with the index pairs produced by its internal walker
/// and graph.
#[derive(Clone, Debug)]
pub struct IterWeights<'a, G: 'a, Ix, W> {
    graph: &'a G,
    walker: W,
    _index: PhantomData<Ix>,
}

impl<'a, G, Ix, W> IterWeights<'a, G, Ix, W> {

    /// Convert to an iterator yielding only the edge weights.
    pub fn edges(self) -> IterEdgeWeights<'a, G, Ix, W> {
        let IterWeights { graph, walker, .. } = self;
        IterEdgeWeights {
            graph: graph,
            walker: walker,
            _index: PhantomData,
        }
    }

    /// Convert to an iterator yielding only the node weights.
    pub fn nodes(self) -> IterNodeWeights<'a, G, Ix, W> {
        let IterWeights { graph, walker, .. } = self;
        IterNodeWeights {
            graph: graph,
            walker: walker,
            _index: PhantomData,
        }
    }

}

impl<'a, G, Ix, W> Iterator for IterWeights<'a, G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
          G: Index<EdgeIndex<Ix>>,
          G: Index<NodeIndex<Ix>>,
{
    type Item = (&'a <G as Index<EdgeIndex<Ix>>>::Output, &'a <G as Index<NodeIndex<Ix>>>::Output);
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let IterWeights { ref mut walker, ref graph, .. } = *self;
        walker.next(graph).map(|(e, n)| (&graph[e], &graph[n]))
    }
}


/// An iterator yielding edge weights associated with the indices produced by its internal walker
/// and graph.
#[derive(Clone, Debug)]
pub struct IterEdgeWeights<'a, G: 'a, Ix, W> {
    graph: &'a G,
    walker: W,
    _index: PhantomData<Ix>,
}

impl<'a, G, Ix, W> Iterator for IterEdgeWeights<'a, G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
          G: Index<EdgeIndex<Ix>>,
{
    type Item = &'a <G as Index<EdgeIndex<Ix>>>::Output;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let IterEdgeWeights { ref mut walker, ref graph, .. } = *self;
        walker.next_edge(graph).map(|e| &graph[e])
    }
}


/// An iterator yielding node weights associated with the indices produced by its internal walker
/// and graph.
#[derive(Clone, Debug)]
pub struct IterNodeWeights<'a, G: 'a, Ix, W> {
    graph: &'a G,
    walker: W,
    _index: PhantomData<Ix>,
}

impl<'a, G, Ix, W> Iterator for IterNodeWeights<'a, G, Ix, W>
    where Ix: IndexType,
          W: Walker<G, Index=Ix>,
          G: Index<NodeIndex<Ix>>,
{
    type Item = &'a <G as Index<NodeIndex<Ix>>>::Output;
    #[inline]
    fn next(&mut self) -> Option<Self::Item> {
        let IterNodeWeights { ref mut walker, ref graph, .. } = *self;
        walker.next_node(graph).map(|n| &graph[n])
    }
}