Files
ab_glyph_rasterizer
addr2line
adler
andrew
approx
arrayvec
ash
atom
backtrace
bitflags
byteorder
calloop
cfg_if
colorful
conrod_core
conrod_derive
conrod_example_shared
conrod_gfx
conrod_glium
conrod_piston
conrod_rendy
conrod_vulkano
conrod_wgpu
conrod_winit
copyless
copypasta
crossbeam
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_queue
crossbeam_utils
daggy
dlib
downcast_rs
draw_state
either
fixedbitset
float
fnv
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
fxhash
getrandom
gfx
gfx_backend_empty
gfx_backend_vulkan
gfx_core
gfx_descriptor
gfx_hal
gfx_memory
gimli
glium
glutin
glutin_egl_sys
glutin_glx_sys
graphics
half
hibitset
inplace_it
input
instant
interpolation
iovec
itoa
lazy_static
lazycell
libc
libloading
line_drawing
linked_hash_map
lock_api
log
maybe_uninit
memchr
memmap
memoffset
miniz_oxide
mio
mio_extras
naga
net2
nix
nom
num
num_bigint
num_complex
num_cpus
num_integer
num_iter
num_rational
num_traits
object
once_cell
ordered_float
ordermap
osmesa_sys
owned_ttf_parser
parking_lot
parking_lot_core
percent_encoding
petgraph
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
raw_window_handle
read_color
relevant
rendy
rendy_chain
rendy_command
rendy_core
rendy_descriptor
rendy_factory
rendy_frame
rendy_graph
rendy_init
rendy_memory
rendy_mesh
rendy_resource
rendy_shader
rendy_texture
rendy_wsi
rustc_demangle
rustc_hash
rusttype
ryu
same_file
scoped_tls
scopeguard
serde
serde_derive
serde_json
shaderc
shaderc_sys
shared_library
slab
smallvec
smithay_client_toolkit
smithay_clipboard
spirv_headers
stb_truetype
syn
takeable_option
texture
thiserror
thiserror_impl
thread_profiler
time
tracing
tracing_core
ttf_parser
typed_arena
unicode_xid
vecmath
viewport
vk_sys
void
vulkano
buffer
command_buffer
descriptor
device
framebuffer
image
instance
memory
pipeline
query
swapchain
sync
vulkano_shaders
walkdir
wayland_client
wayland_commons
wayland_cursor
wayland_egl
wayland_protocols
wayland_sys
wgpu
wgpu_core
wgpu_types
winit
x11
x11_clipboard
x11_dl
xcb
xcursor
xdg
xml
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//! A simple, non-interactive widget for drawing a single **Oval**.

use {Color, Colorable, Dimensions, Point, Rect, Scalar, Sizeable, Theme, Widget};
use graph;
use std;
use super::Style as Style;
use widget;
use widget::triangles::Triangle;


/// A simple, non-interactive widget for drawing a single **Oval**.
#[derive(Copy, Clone, Debug, WidgetCommon_)]
pub struct Oval<S> {
    /// Data necessary and common for all widget builder types.
    #[conrod(common_builder)]
    pub common: widget::CommonBuilder,
    /// Unique styling.
    pub style: Style,
    /// The number of lines used to draw the edge.
    pub resolution: usize,
    /// A type describing the section of the `Oval` that is to be drawn.
    pub section: S,
}

/// Types that may be used to describe the visible section of the `Oval`.
pub trait OvalSection: 'static + Copy + PartialEq + Send {
    /// The function used to determine if a point is over the oval section widget.
    const IS_OVER: widget::IsOverFn;
}

/// The entire `Oval` will be drawn.
///
/// To draw only a section of the oval, use the `section` builder method.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct Full;

impl OvalSection for Full {
    const IS_OVER: widget::IsOverFn = is_over_widget;
}

/// A section of the oval will be drawn where the section is specified by the given radians.
///
/// A section with `radians` of `2.0 * PI` would be equivalent to the full `Oval`.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct Section {
    /// The angle occuppied by the section's circumference.
    pub radians: Scalar,
    /// The radians at which the section will begin.
    ///
    /// A value of `0.0` will begin at the right of the oval.
    pub offset_radians: Scalar,
}

impl OvalSection for Section {
    const IS_OVER: widget::IsOverFn = is_over_section_widget;
}

/// Unique state for the **Oval**.
#[derive(Copy, Clone, Debug, PartialEq)]
pub struct State<S> {
    /// The number of lines used to draw the edge.
    pub resolution: usize,
    /// A type describing the section of the `Oval` that is to be drawn.
    pub section: S,
}

/// The default circle resolution if none is specified.
pub const DEFAULT_RESOLUTION: usize = 50;

impl Oval<Full> {
    /// Build an **Oval** with the given dimensions and style.
    pub fn styled(dim: Dimensions, style: Style) -> Self {
        Oval {
            common: widget::CommonBuilder::default(),
            style: style,
            resolution: DEFAULT_RESOLUTION,
            section: Full,
        }.wh(dim)
    }

    /// Build a new **Fill**ed **Oval**.
    pub fn fill(dim: Dimensions) -> Self {
        Oval::styled(dim, Style::fill())
    }

    /// Build a new **Oval** **Fill**ed with the given color.
    pub fn fill_with(dim: Dimensions, color: Color) -> Self {
        Oval::styled(dim, Style::fill_with(color))
    }

    /// Build a new **Outline**d **Oval** widget.
    pub fn outline(dim: Dimensions) -> Self {
        Oval::styled(dim, Style::outline())
    }

    /// Build a new **Oval** **Outline**d with the given style.
    pub fn outline_styled(dim: Dimensions, line_style: widget::line::Style) -> Self {
        Oval::styled(dim, Style::outline_styled(line_style))
    }
}

impl<S> Oval<S> {
    /// The number of lines used to draw the edge.
    ///
    /// By default, `DEFAULT_RESOLUTION` is used.
    pub fn resolution(mut self, resolution: usize) -> Self {
        self.resolution = resolution;
        self
    }

    /// Produces an `Oval` where only a section is drawn.
    ///
    /// The given `radians` describes the angle occuppied by the section's circumference.
    pub fn section(self, radians: Scalar) -> Oval<Section> {
        let Oval { common, style, resolution, .. } = self;
        let section = Section { radians, offset_radians: 0.0 };
        Oval { common, style, resolution, section }
    }
}

impl Oval<Section> {
    /// The radians at which the section will begin.
    ///
    /// A value of `0.0` will begin at the rightmost point of the oval.
    pub fn offset_radians(mut self, offset_radians: Scalar) -> Self {
        self.section.offset_radians = offset_radians;
        self
    }
}

impl<S> Widget for Oval<S>
where
    S: OvalSection,
{
    type State = State<S>;
    type Style = Style;
    type Event = ();

    fn init_state(&self, _: widget::id::Generator) -> Self::State {
        State {
            resolution: DEFAULT_RESOLUTION,
            section: self.section,
        }
    }

    fn style(&self) -> Self::Style {
        self.style.clone()
    }

    fn is_over(&self) -> widget::IsOverFn {
        S::IS_OVER
    }

    fn update(self, args: widget::UpdateArgs<Self>) -> Self::Event {
        let widget::UpdateArgs { state, .. } = args;
        if state.resolution != self.resolution {
            state.update(|state| state.resolution = self.resolution);
        }
        if state.section != self.section {
            state.update(|state| state.section = self.section);
        }
    }
}

impl<S> Colorable for Oval<S> {
    fn color(mut self, color: Color) -> Self {
        self.style.set_color(color);
        self
    }
}

/// An iterator yielding the `Oval`'s edges as a circumference represented as a series of points.
///
/// `resolution` is clamped to a minimum of `1` as to avoid creating a `Circumference` that
/// produces `NaN` values.
pub fn circumference(rect: Rect, resolution: usize) -> Circumference {
    Circumference::new(rect, resolution)
}

/// An iterator yielding the triangles that describe the given oval.
pub fn triangles(rect: Rect, resolution: usize) -> Triangles {
    circumference(rect, resolution).triangles()
}

/// An iterator yielding the edges of an `Oval` (or some section of an `Oval`) as a circumference
/// represented as a series of edges.
#[derive(Clone)]
#[allow(missing_copy_implementations)]
pub struct Circumference {
    index: usize,
    num_points: usize,
    point: Point,
    rad_step: Scalar,
    rad_offset: Scalar,
    half_w: Scalar,
    half_h: Scalar,
}

impl Circumference {
    fn new_inner(rect: Rect, num_points: usize, rad_step: Scalar) -> Self {
        let (x, y, w, h) = rect.x_y_w_h();
        Circumference {
            index: 0,
            num_points: num_points,
            point: [x, y],
            half_w: w * 0.5,
            half_h: h * 0.5,
            rad_step: rad_step,
            rad_offset: 0.0,
        }
    }

    /// An iterator yielding the `Oval`'s edges as a circumference represented as a series of points.
    ///
    /// `resolution` is clamped to a minimum of `1` as to avoid creating a `Circumference` that
    /// produces `NaN` values.
    pub fn new(rect: Rect, mut resolution: usize) -> Self {
        resolution = std::cmp::max(resolution, 1);
        use std::f64::consts::PI;
        let radians = 2.0 * PI;
        Self::new_section(rect, resolution, radians)
    }

    /// Produces a new iterator that yields only a section of the `Oval`'s circumference, where the
    /// section is described via its angle in radians.
    ///
    /// `resolution` is clamped to a minimum of `1` as to avoid creating a `Circumference` that
    /// produces `NaN` values.
    pub fn new_section(rect: Rect, resolution: usize, radians: Scalar) -> Self {
        Self::new_inner(rect, resolution + 1, radians / resolution as Scalar)
    }
}

/// An iterator yielding triangles that describe an oval or some section of an oval.
#[derive(Clone)]
pub struct Triangles {
    // The last circumference point yielded by the `CircumferenceOffset` iterator.
    last: Point,
    // The circumference points used to yield yielded by the `CircumferenceOffset` iterator.
    points: Circumference,
}

impl Circumference {
    /// Produces a new iterator that yields only a section of the `Oval`'s circumference, where the
    /// section is described via its angle in radians.
    pub fn section(mut self, radians: Scalar) -> Self {
        let resolution = self.num_points - 1;
        self.rad_step = radians / resolution as Scalar;
        self
    }

    /// Rotates the position at which the iterator starts yielding points by the given radians.
    ///
    /// This is particularly useful for yielding a different section of the circumference when
    /// using `circumference_section`
    pub fn offset_radians(mut self, radians: Scalar) -> Self {
        self.rad_offset = radians;
        self
    }

    /// Produces an `Iterator` yielding `Triangle`s.
    ///
    /// Triangles are created by joining each edge yielded by the inner `Circumference` to the
    /// middle of the `Oval`.
    pub fn triangles(mut self) -> Triangles {
        let last = self.next().unwrap_or(self.point);
        Triangles { last, points: self }
    }
}

impl Iterator for Circumference {
    type Item = Point;
    fn next(&mut self) -> Option<Self::Item> {
        let Circumference {
            ref mut index,
            num_points,
            point,
            rad_step,
            rad_offset,
            half_w,
            half_h,
        } = *self;
        if *index >= num_points {
            return None;
        }
        let x = point[0] + half_w * (rad_offset + rad_step * *index as Scalar).cos();
        let y = point[1] + half_h * (rad_offset + rad_step * *index as Scalar).sin();
        *index += 1;
        Some([x, y])
    }
}

impl Iterator for Triangles {
    type Item = Triangle<Point>;
    fn next(&mut self) -> Option<Self::Item> {
        let Triangles { ref mut points, ref mut last } = *self;
        points.next().map(|next| {
            let triangle = Triangle([points.point, *last, next]);
            *last = next;
            triangle
        })
    }
}

/// Returns `true` if the given `Point` is over an oval at the given rect.
pub fn is_over(r: Rect, p: Point) -> bool {
    let (px, py) = (p[0], p[1]);
    let (ox, oy, w, h) = r.x_y_w_h();
    let rx = w * 0.5;
    let ry = h * 0.5;
    ((px - ox).powi(2) / rx.powi(2) + (py - oy).powi(2) / ry.powi(2)) < 1.0
}

/// The function to use for picking whether a given point is over the oval.
pub fn is_over_widget(widget: &graph::Container, point: Point, _: &Theme) -> widget::IsOver {
    is_over(widget.rect, point).into()
}

/// Returns whether or not the given point is over the section described
pub fn is_over_section(circumference: Circumference, p: Point) -> bool {
    widget::triangles::is_over(circumference.triangles(), p)
}

/// The function to use for picking whether a given point is over the oval section.
pub fn is_over_section_widget(widget: &graph::Container, p: Point, _: &Theme) -> widget::IsOver {
    widget
        .state_and_style::<State<Section>, Style>()
        .map(|unique| {
            let res = unique.state.resolution;
            let offset_rad = unique.state.section.offset_radians;
            let rad = unique.state.section.radians;
            let circumference = Circumference::new_section(widget.rect, res, rad)
                .offset_radians(offset_rad);
            is_over_section(circumference, p)
        })
        .unwrap_or_else(|| widget.rect.is_over(p))
        .into()
}